Consolidated Hydrogeological Study Report

Osaca Hillstreet Subdivision

County Road 65, Osaca, Ontario

D.M. Wills Project Number 22-11056

D.M. Wills Associates LimitedPartners in Engineering, Planning and Environmental Services
Peterborough

February 2025

Prepared for: Hillstreet Developments Ltd. c/o Larry MacDonell

Submissions Summary

Submission No.	Submission Title	Date of Release	Submissions Summary
1	Final Consolidated Hydrogeological Study Report	February 28, 2025	Final Submission to Client

This report has been formatted considering the requirements of the Accessibility for Ontarians with Disabilities Act.

Table of Contents

1.0	Intro	oduction	1
2.0	Sco	pe of Work	3
3.0	Sub	surface Investigation	5
3.1	So	oil Profile Summary	5
3.2	В	edrock	<i>6</i>
3.3	G	roundwater	<i>6</i>
3	3.3.1	Shallow Groundwater Levels	<i>6</i>
3	3.3.2	Groundwater Flow Direction and Hydraulic Gradients	7
4.0	In-S	itu Infiltration Testing	8
4.1	Р	ermeability and Percolation Time	8
5.0	Gro	undwater Availability	10
5.1	Ν	NECP Water Well Record Survey	10
5.2	Н	istoric Groundwater Supply Evaluation	12
5.3	20	023 Pumping tests	12
5	5.3.1	A377795 Well Test	13
5	5.3.2	A377796 Well Test	14
5	5.3.3	A377799 Well Test	16
5.4	20	024 Pumping tests	17
5	5.4.1	A395882 Well Test	18
5	5.4.2	A395883 Well Test	20
5	5.4.3	A395881 Well Test	22
5.5	Н	ydrogeological modelling	23
5	5.5.1	Aquifer Parameters	25
5	5.5.2	Comparison with the Results Obtained on the Neighbouring Property	27
5	5.5.3	Model Construction and Calibration	28
5	5.5.4	Scenario 1 - Evaluation	29
5	5.5.5	Scenario 2 – Evaluation	30
5	5.5.6	Scenario 3 – Evaluation	32
5.6	G	roundwater Quality	33
5	5.6.1	2023 Pumping Tests	33
5	5.6.2	2024 Pumping Tests	34
5	5.6.3	Nitrate Concentrations in Groundwater	35
6.0	Gro	undwater Impact Assessment	36

6.1	Water Balance Analysis	37
6.2	Predictive Assessment	38
7.0	Conclusions and Recommendations	39
7.0	Conclusions and Recommendations	
	Tables	
Table	1 – Summary of Particle Size Distribution	6
	2 – Shallow Groundwater Static Level	
	e 3 – Permeability and Percolation Time Summary	
	4– A377795 Well Pumping Test Details	
	5– Pumping Test Summary Well A377795	
Table	e 6 – A377796 Well Pumping Test Details	15
	27– Pumping Test Summary Well A377796	
	8– A377799 Well Pumping Test Details	
	9– Pumping Test Summary Well A377799	
	e 10 – A395882 Well Pumping Test Details	
	e 11 – Pumping Test Summary Well A395882	
	± 12 – A395883 Well Pumping Test Details	
	e 13 – Pumping Test Summary Well A395883	
	e 14 – A395881 Well Pumping Test Details	
	15 – Pumping Test Summary Well A395883	
	e 16 – Derived Aquifer Parameters – Subject Property	
	17 – Derived Aquifer Parameters – Property to the South 18 – Simulated and Observed Drawdowns	
	e 19 – Scenario 1.1 – Simulation Results	
	20 – Scenario 1.2 – Simulation Results	
	21 – Scenario 2.1 – Simulation Results – Layer 8	
	22 – Scenario 2.1 – Simulation Results – Layer 5	
	23 – Scenario 2.2 – Simulation Results – Layer 8	
	24 – Scenario 2.2 – Simulation Results – Layer 5	
	25 – Scenario 3 – Simulation Results – Layer 3	
	26 – Nitrate concentrations in groundwater on the subject Property	
	27– Water Balance Summary	
	28 – Predictive Assessment of Nitrate Concentration	
	Figures	
_	e 1 – Subject Property Plan	
_	e 2a – Subsurface Investigation Plan (December 2023)	
	e 2b – Existing Wells (November 2024)	
_	e 3 – Subsurface Infiltration Plan	
_	e 4 – Proposed Development Domestic Wells	
_	e 5 – Cross Section A-A'	
_	e 6 – Cross Section B-B'	
_	e 7 – Hydrogeological Modelling – Simulated Drawdown – Scenario 1.2	
1-19016	e 8 – Groundwater Monitoring Program – Proposed Monitor wells	

Appendices

Appendix A - Site Plans - D.G. Biddle & Associates Limited

Appendix B – Test Pit Logs

Appendix C - Certificates of Analysis - Physical Soil Testing

Appendix D – Infiltration Graphs

Appendix E - MECP Well Record Survey

Appendix F - MECP Well Records - Well ID A377795, A377796, A377799, A395881,

A395882, and A395883

Appendix G - Pumping Test Hydrographs

Appendix H - Certificates of Analysis - Groundwater

Appendix I – Water Balance

Appendix J – Mass Balance Equation

1.0 Introduction

D.M. Wills Associates Limited (Wills) was retained by Hillstreet Developments Ltd. c/o Larry MacDonell (Client) to conduct a Hydrogeological Study (Study) in support of the development of a residential subdivision (Proposed Development) on the property located at Pt Lot 27 Concession 5, in the village of Osaca, Ontario (Subject Property). The location of the Subject Property is shown on **Figure 1**.

The Study was requested by the Municipality of Port Hope (Pre-Consultation – Planning Review dated May 25, 2022) to confirm sewage servicing capabilities in context of the Proposed Development, and to confirm that adequate water supply is available. Furthermore, infiltration rates of the subsurface soils and shallow groundwater conditions were evaluated as input to the design of proposed stormwater management features and sewage disposal systems on the Subject Property.

Wills' initial investigations were completed in 2022 on the basis of a Preliminary Draft Plan prepared by D.G. Biddle & Associates Limited (Biddle), dated August 26, 2022, which considered 59 residential lots. Wills' initial investigative findings were summarized in the following document:

 Final Hydrogeological Study Report, Osaca Hillstreet Subdivision, County Road 65, Osaca, Ontario, D.M. Wills Project Number 22-11056, prepared for Hillstreet Developments Ltd. c/o Larry Macdonell, December 7, 2022 (Wills' 2022 Report)

Wills' 2022 Report concluded that the Proposed Development including 59 individual lots would have an impact on groundwater quality that would not satisfy the requirements of the Ministry of Environment, Conservation, and Parks (MECP) Guideline D-5-4 Individual Onsite Sewage Systems: Water Quality Impact Risk Assessment (Guideline D-5-4).

Additional investigations were completed by Wills in 2023, including but not limited to, three pumping tests in newly constructed O. Reg. 903 Water Supply Wells, hydrogeological modelling, and an updated Groundwater Impact Assessment. These additional investigations were completed to confirm sewage servicing capabilities and water supply availability following modifications to the Proposed Development. The findings of these additional investigations were summarized in the following document:

 Revised Final Hydrogeological Study Report, Osaca Hillstreet Subdivision, County Road 65, Osaca, Ontario, D.M. Wills Project Number 22-11056, prepared for Hillstreet Developments Ltd. c/o Larry Macdonell, April 2, 2024, (Wills' 2024 Report)

Wills' 2024 Report included:

- A groundwater availability assessment on the basis of a preliminary site plan prepared by Biddle, dated October 15, 2023, which considered 48 residential lots
- An updated Groundwater Impact Assessment on the basis of a preliminary site plan prepared by Biddle, dated February 21, 2024, which considered 40 residential lots

Wills' 2024 Report was peer reviewed by BluMetric Environmental Inc. (BluMetric) on behalf of the Municipality of Port Hope. BluMetric's comments are summarized in the following document:

 Additional Peer Review of Hydrogeology Study – Second Submission, Proposed Residential Development, 5868 County Road 65, Osaca, Project Number 230352, prepared by Ian Macdonald, M.Sc., P.Geo. for the Municipality of Port Hope c/o Ms. Merepeza, May 17, 2024

To address Blumetric's peer review comments, Wills conducted additional field studies and groundwater modelling for the Subject Property, and prepared the following documents:

- Revised Final Hydrogeological Study Report_v2, Osaca Hillstreet Subdivision, County Road 65, Osaca, Ontario, D.M. Wills Project Number 22-11056, prepared for Hillstreet Developments Ltd. c/o Larry Macdonell, July 17, 2024, (Wills' 2024 Revised Report)
- Osaca Hillstreet Subdivision, Northumberland County, Ontario, Hydrogeological Study Report, Answer to BluMetric Environmental following 2nd submission, D.M. Wills Associates Project No. 22-11056, for Hillstreet Developments Ltd. c/o Larry Macdonell, July 17, 2024 (Wills' Response Memo)
- Osaca Hillstreet Subdivision, Northumberland County, Ontario, Hydrogeological Study Report, Addendum #1, D.M. Wills Associates Project No. 22-11056, for Hillstreet Developments Ltd. c/o Larry Macdonell, December 11, 2024 (Wills' Addendum #1)

Prior to the preparation of Wills' Addendum #1, Wills completed a Water Balance Assessment (August 8, 2024) which included a Groundwater Impact Assessment to determine the maximum number of lots that could be supported from a sewage servicing perspective. Based on this assessment, it was concluded that the Subject Property could safely accommodate 38 residential lots.

Wills' Addendum #1 included an updated groundwater availability assessment on the basis of a preliminary site plan prepared by Biddle, dated August 15, 2024, which considered 38 residential lots.

This Consolidated Hydrogeological Study Report summarizes Wills' investigative findings from the initial investigations completed in 2022 to those summarized in Wills' Addendum #1 (December 2024).

The successive preliminary draft plans prepared by Biddle which served as a basis for Wills' Study are provided in **Appendix A-1** through **A-4.** For clarity, the current Proposed Development is presented on the Preliminary Draft Plan dated August 15, 2024, and is included in **Appendix A-4**.

Wills' Study was conducted on the basis of the MECP Guideline D-5-4 and Guideline D-5-5 Private Wells: Water Supply Assessment (Guideline D-5-5).

2.0 Scope of Work

Wills' approved Scope of Work to complete the Study included the following:

- A review of available Ministry of Environment, Conservation, and Parks (MECP) well records within 500 meters (m) of the Subject Property to provide a preliminary characterization of the local hydrogeological conditions.
- Prior to initiating field investigations, public and private utility services locates were obtained and reviewed by Wills staff. A Site-Specific Health and Safety Plan and Field Work plan were prepared to ensure safe and efficient fieldwork programs.
- Steenburgh Sand and Gravel (Steenburgh) excavated 12 test pits on the Subject Property to a depth of 3.0 metres below ground (mbg) between September 23 and September 26, 2022.
- Five drive-point monitor wells were installed in the base of select test pits to monitor groundwater levels above a depth of 3 mbg.
- Eight single ring infiltrometers were installed on the Subject Property to determine representative infiltration rates for stormwater management and sewage disposal system design between September 26 and September 27, 2022.
- Retained soils samples were reviewed by Wills prior to submitting select samples
 to PRI Engineering (PRI), a Canadian Certified Independent Laboratory (CCIL) for
 analysis of Particle Size Distribution and percolation time estimation.
- Static groundwater level measurements were recorded on October 5, 2022, December 5, 2023, September 9, 2024, and September 27, 2024, in three monitor wells installed by Cambium Inc. (Cambium) on the Subject Property in 2022 and identified BH101-22, BH-107-22 and BH110-22. Groundwater was found at depths ranging from 2.33 to 2.99 mbg.
- Herb Lang Well Drilling Ltd. (HLWD) conducted a 6-hour duration pumping test on six newly installed Ontario Regulation (O. Reg.) 903 Water Supply Wells on the Subject Property, including:
 - In wells identified as A377795, A377796 and A377799 on October 31, November 2, and November 8, 2023, respectively. These wells were installed in 2023 at depths ranging from approximately 10 to 12 mbg.
 - o In wells identified as A395881, A395882, and A395883 on September 9, 10 and 11, 2024, respectively. These wells were installed in 2024 at depths ranging from 23.77 mbg (A395881) to approximately 48.50 mbg (A395882 and A395883).
 - The pumping tests were conducted to determine production yield, maximum pumping rate, well recovery, groundwater quality, the potential for interference with existing neighbouring groundwater taking activities as well as future pumping activities on-site.
- Two groundwater samples were collected from each of the newly installed O. Reg. 903 Water Supply Wells during the pumping tests (at the 1-hour and 6-hour

- pumping test intervals) and submitted to SGS Canada Inc. (SGS) for analysis of select physical, chemical, and biological parameters for comparison to the Ontario Drinking Water Quality Standards (ODWQS).
- During each of the pumping tests, real-time data logging technology (Solinst Level Loggers) was employed to record the drawdown and groundwater level fluctuations in the pumping well, as well as the response to pumping in all the other existing on-site O. Reg. 903 Water Supply Wells at the time of the test. In addition to the O. Reg. 903 Water Supply Wells, the groundwater level fluctuations were monitored in:
 - The existing dug well on the neighboring property located 5868 County Road 65, Port Hope, ON L1A 3V5, during the pumping tests completed in October/November 2023
 - Monitor wells BH107-22 and BH110-22 during the pumping tests completed in September 2024
- 24 groundwater samples were collected from wells installed on the Subject Property and submitted to SGS for nitrate analysis to inform background nitrate concentration, including:
 - Nine groundwater samples from wells installed in the surficial aquifer to depths ranging from 3.00 to 5.79 mbg, including:
 - Three samples from wells MW22-08, BH107-22 and BH110-22 on October 5, 2022
 - Three samples from wells BH101-22, BH107-22 and BH110-22 on December 5, 2023
 - Three samples from wells BH101-22, BH107-22 and BH110-22 on September 27, 2024
 - 15 groundwater samples from O. Reg. 903 Water Supply Wells installed in the deeper aquifers identified on the Subject Property including:
 - Six samples from wells A377795, A377796 and A377799 (two per well), in October/November 2023, during the pumping tests
 - Three additional samples from wells A377795, A377796 and A377799 in September 2024
 - Six samples from wells A395881, A395882 and A395883 (two per well), in September 2024, during the pumping tests
- Groundwater modelling was used to evaluate the pumping test data with respect to groundwater availability and the potential for post-development interference between on-site and neighbouring water users.
- Assessment of the Subject Property's capacity to support private on-site sewage disposal systems (Groundwater Impact Assessment).
- Evaluation of Wills' desktop review and field investigations findings, and preparation of this Consolidated Hydrogeological Study Report.

Boreholes, monitor wells, O. Reg. 903 Water Supply Wells, test pits, and infiltration test locations are shown on **Figure 2a** and **Figure 2b**.

3.0 Subsurface Investigation

Test pit and infiltration test locations completed between September 23 and September 27, 2022, are shown on **Figure 2a**.

Representative soil samples were submitted to PRI for analysis of Particle Size Distribution and percolation time estimation. Laboratory testing results were compared to the Ministry of Municipal Affairs and Housing, Building and Development Branch (MMAH) Supplementary Standard SB-6 – Percolation Time and Soil Descriptions Table 2 & Table 3 values (Ontario Building Code [OBC], 2012) (OBC Table 2 & OBC Table 3). Percolation times are discussed in **Section 4.0**.

Test pit logs detailing the encountered subsurface conditions are included in **Appendix B**. Boreholes advanced for the purpose of installing infiltrometers were completed using an excavator-mounted auger and were positioned adjacent to existing test pits where possible as a means of confirming the underlying soils. These boreholes were not logged or sampled.

3.1 Soil Profile Summary

The Subject Property is located in the Physiographic Region of the Iroquois Plain (*The Physiography of Southern Ontario, Chapman and Putnam, 1984*), which is characterized by lacustrine deposits including sand plains and beaches associated the former Lake Iroquois. Ontario Geological Survey (OGS) mapping suggests that surficial geology on the Subject Property consists of alluvial deposits.

The results of the test pit program indicate the overburden is generally aligned with published mapping and includes a surficial layer of silty sand topsoil underlain by sand with slight variations in gravel, silt, and clay content. A generally north-south trending band of silt and clay rich soils was observed on the western side of the Subject Property at TP22-10, TP22-08, and TP22-11. This material was encountered at a depth ranging from approximately 1.3 to 1.7 mbg and extended to the test pit termination depths of approximately 3.0 mbg.

Seven laboratory particle size distribution analyses were completed on the collected soil samples. The analytical results are summarized in **Table 1** on the basis of the Unified Soil Classification System (USCS). Certificates of Analysis for the physical soil analysis are included in **Appendix C**.

Table 1– Summary of Particle Size Distribution

Test Pit ID	Sample No.	Sample Depth (mbg)	Soil Unit	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
TP22-01	GS-01	1.4	Sand	3	93	3	1
TP22-02	GS-02	2.9	Sand	3	94	3	0
TP22-03	GS-03	1.0	Sand	0	97	3	0
TP22-05	GS-01	1.7	Sand	2	78	18	2
TP22-08	GS-02	2.0	Silt & Clay	0	4	56	40
TP22-10	GS-02	1.9	Silt & Clay	0	3	62	35
TP22-11	GS-02	2.7	Silt & Clay	0	4	71	25

3.2 Bedrock

Based on the MECP well records associated with O. Reg. 903 Water Supply Wells A395882 and A395883, bedrock was encountered at a depth of 43.6 mbg at the location of well A395882 and 43.3 mbg at the location of well A395883. The well records suggest the bedrock on the Subject Property consists of limestone material. This information is consistent with nearby MECP well records reviewed for the Study, as summarized in **Section 5.1**.

3.3 Groundwater

3.3.1 Shallow Groundwater Levels

Groundwater level monitoring was conducted at the five-drive point monitor well locations, as well as three on-site monitor wells installed by Cambium and detailed in their November 2022 report titled Geotechnical Investigation – Proposed Residential Development, 5868 County Road 65, Port Hope, ON (Geotechnical Report). Figure 2a shows the locations of the monitor wells included in Wills' shallow groundwater level monitoring. Table 2 summarizes the static water levels measured by Wills on the Subject Property since 2022. Groundwater elevations for select monitor wells were inferred using the relative elevations provided in the Geotechnical Report and are referenced to a local assumed benchmark (200 masl).

Table 2 – Shallow Groundwater Static Level

		Wall	Cround	October	5, 2022	Decembe	er 5, 2023	Septemb	er 9, 2024	Septembe	er 27, 2024
Well ID	Installation year	Well depth (mbg)	Ground Elevation (masl)	GW level (mbg)	GW Elevation (masl)	GW level (mbg)	GW Elevation (masl)	GW level (mbg)	GW Elevation (masl)	GW level (mbg)	GW Elevation (masl)
MW22-01	2022	3.00		2.71 (September 27, 2022)							
MW22-02	2022	3.00		dry							
MW22-05	2022	3.00		2.58							
MW22-08	2022	3.00		2.63							
MW22-11	2022	3.00		2.34							
BH101-22	2022	6.20	199.90	2.66	197.24	2.83	197.07			2.66	197.24
BH107-22	2022	5.94	200.40	2.54	197.86	2.85	197.55	2.33	198.07	2.48	197.92
BH110-22	2022	5.97	198.70	2.58	196.12	2.99	195.71	2.43	196.27	2.57	196.13

^{*}mbg – metres below ground masl – metres above sea level, measured against an assumed datum (local benchmark)

Additional measurements during spring and at the end of summer are included in Wills' proposed Monitoring Program described in **Section 7.0**.

3.3.2 Groundwater Flow Direction and Hydraulic Gradients

Shallow groundwater flow direction was calculated using Wills' field measurements and assumed monitor well elevations provided in the Geotechnical Report. Based on this information, Wills infers the shallow groundwater flows direction to be to the southeast on the Subject Property. The steepest hydraulic gradient was calculated between BH107-22 and BH110-22 at:

- 0.0043 on October 5, 2022
- 0.0046 on December 5, 2023
- 0.0044 on September 9, 2024
- 0.0044 on September 27, 2024

Shallower hydraulic gradients between BH101-22 to BH110-22 and from BH107-22 to BH101-22 were calculated to be:

- 0.0019 and 0.0016 respectively, on October 5, 2022
- 0.0024 and 0.0012 respectively, on December 5, 2023
- 0.0019 and 0.0017 respectively, on September 27, 2024

The inferred groundwater flow direction is shown in Figure 2a.

4.0 In-Situ Infiltration Testing

In-situ Infiltration tests were conducted at select locations on the Subject Property to determine representative shallow infiltration rates for stormwater management and sewage disposal system design. Infiltration testing locations are shown on **Figure 2a**.

The tests were conducted at depths ranging from 0.6 to 2.1 mbg and were completed using 51-millimetre open-end single ring infiltrometers. Water levels within the infiltrometer casings were manually monitored using a Solinst water level tape. The infiltration tests were conducted for a maximum of 96 minutes, with water levels measured at 30-second intervals for the first 5-minutes and increasing intervals as the test progressed. Detailed calculations and supporting infiltration graphs are provided in **Appendix D.**

4.1 Permeability and Percolation Time

Table 3 summarizes the permeability and percolation times of the tested soils on the basis of the in-situ testing, and laboratory results compared to OBC Table 2 and Table 3.

Table 3 – Permeability and Percolation Time Summary

ID	Sample ID	In-situ Testing	Physical Soil Testing Results	Percolation Range (OBC Table 2 and 3)	Laboratory Estimated Percolation (T)	Permeability (Inferred Soil Envelope)
TP22-01 Proxy for INF-01	GS-01	T= 0.42 min/cm or 1429 mm/hr	SP envelope	T = 2 - 8 min/cm or 75 - 300 mm/hr	T = 6 min/cm	Medium
TP22-02 Proxy for INF-02	GS-02	T= 0.49 min/cm or 1224 mm/hr	SP envelope	T = 2 - 8 min/cm or 75 - 300 mm/hr	T = 7 min/cm	Medium
TP22-03 Proxy for INF-03	GS-01	T=0.35 min/cm or 1714 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	T = 6 min/cm	Medium
TP22-05 Proxy for INF-05	GS-01	T=0.22 min/cm or 2727 mm/hr	SM envelope	T = 8 – 20 min/cm or 30 – 75 mm/hr	T = 12 min/cm	Medium to Low
INF-06	N/A	T=0.78 min/cm or 769 mm/hr	SM envelope	T = 8 – 20 min/cm or 30 – 75 mm/hr	N/A	Medium to Low
INF-07	N/A	T=0.33 min/cm or 1818 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	N/A	Medium
INF-08A	N/A	T=1.11 min/cm or 540 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	N/A	Medium
TP22-08 Proxy for INF-08B	GS-02	T= 0 min/cm or 0 mm/hr	OH envelope	T = > 50 min/cm or >50 mm/hr	T = > 50 min/cm	Unacceptable
INF-11 Notes: 1 SM envelor	N/A	T= 0.81 min/cm or 740 mm/hr	SM envelope	T = 8 – 20 min/cm or 30 – 75 mm/hr	N/A	Medium to Low

Notes:

1. SM envelope –silty sands, sand-silt mixtures
SP envelope – poorly graded sands, gravelly sand, little or no fines
OH envelope – Organic clays of medium to high plasticity, organic silts

Wills provides the following considerations with respect to the proposed stormwater management and sewage disposal system designs:

- The encountered soils are anticipated to generally fall within the SP and SM soils envelopes. Sewage disposal system and stormwater management feature design should take into account the silt and clay rich soils identified at TP22-08, TP22-10, and TP22-11 that were encountered between 1.3 to 3.0 mbg. Based on INF-08B, these soils do not have an acceptable permeability on the basis of the OBC.
- A Subsurface Infiltration Plan showing the inferred contact between these two distinct shallow soil units is included as **Figure 3**. Subsurface stratigraphy was inferred from the findings of Wills' test pit program and considers soil properties above a depth of 3.0 mbg.
- Within the sand to silty sand areas identified in red in Figure 3, Wills recommends using the mid point of the T-time ranges provided in the OBC for stormwater management and sewage disposal system design on the Subject Property. Although these T-time values (mid range) are slower than that measured in the in-situ tests, Wills considers these conservative for the purpose of design and should account for any lateral or vertical variation in infiltration rates.
- Within the clayey silt to silt and clay area identified in green in Figure 3, Wills
 recommends that raised tile beds be used for septic systems installed in this area,
 and minimum setback distances be evaluated accordingly.

5.0 Groundwater Availability

Wills' preliminary water supply assessment included a review of nearby MECP Well Records and historic hydraulic testing on the neighboring property to the south. Additionally, on-site testing was completed by Wills in six newly installed O. Reg. 903 Water Supply Wells to confirm that adequate groundwater supply and quality is available to the Proposed Development. Pumping tests were conducted as follows:

- In October/November 2023 in wells identified as A377795, A377796 and A377799 installed in 2023 at depths ranging from approximately 10 to 12 mbg.
- In September 2024 in wells identified as A395881, A395882, and A395883 installed in 2024 at depths ranging from 23.77 mbg (A395881) to approximately 48.50 mbg (A395882 and A395883).

5.1 MECP Water Well Record Survey

Wills completed a desktop evaluation of MECP Well Records to assist in characterizing the local hydrogeological conditions within 500 m of the Subject Property. The MECP Well Location Plan showing the relative locations of the MECP wells and their respective identifiers is included as **APP-E1** in **Appendix E**. Details for each MECP Well are summarized as **APP-E2** in **Appendix E**.

Nine well records were identified within the 500 m search radius and are summarized below.

- Seven wells were designated as domestic use and two of the wells had an unknown use.
 - One of the unknown uses had incomplete details on the well record, and the other was in relation to a clean-out of sand and gravel from the well bore.
- Five wells were installed in overburden material and four wells were installed in bedrock.
- Well depths ranged from approximately 7.6 to 46 mbg for the wells installed in overburden (25.5 mbg average), and from 34.1 to 44.8 mbg for those installed in bedrock (40.9 mbg average).
- Static water levels ranged from approximately 5.5 to 9.1 mbg for the wells that were installed in overburden (6.9 mbg average), and from 8.5 to 29 mbg for those installed in bedrock (18.3 mbg average).
- The recommended pumping rates ranged from approximately 7.6 to 30.2 litres per minute (L/min) for the overburden wells (19.9 L/min average), and from 3.8 to 37.8 L/min for the bedrock wells (20.2 L/min average).

Based on Wills review, a viable aquifer is present on lands adjacent to the Subject Property. Several wells directly north of the Subject Property and directly west of the 500 m buffer (within the community of Osaca), are dug wells that are screened within a shallow sand layer. These wells are less useful for inferring available water supply as they are non-compliant with Ontario Regulation 903 with respect to the depth of construction.

The most useful information can be inferred from wells to the south and southeast of the Subject Property, which all intercept a productive aquifer directly above, or within the bedrock stratum. Overburden wells in this area are generally screened within a coarse sand and gravel layer, and have recommended pumping rates between approximately 15 and 30 L/min. Adjacent bedrock wells are noted as supplying fresh groundwater with recommended pumps rates that range from approximately 19 to 38 L/min. Based on the short-term pumping test results provided on the Well Records, all of these Wells satisfy the minimum yield requirement of 13.7 L/min (four bedroom dwelling) provided in the MECP Guideline D-5-5 Private Wells: Water Supply Assessment (Guideline D-5-5).

Based on the proximity of these wells to the Subject Property, it is likely that the hydrogeological/aquifer conditions extend north below the Subject Property, provided that the underlying bedrock structure and overburden deposits are similar in nature.

5.2 Historic Groundwater Supply Evaluation

Three of the water wells included in Wills' MECP records search were subject to long-term pumping tests and detailed in the report titled *Groundwater Supply Assessment Report – Hope Concession 5, Part Lot 27 County Road No. 65*, prepared by Ted Rannie M.Sc., P. Geo in September 2018 (2018 Report). This report was prepared to support the development of a 20-lot subdivision on lands directly south of the Subject Property. The wells included in this assessment were MECP Well ID 7314568 (overburden), 7314570 (bedrock), and 7314569 (overburden).

The 2018 Report concluded the following:

- The wells screened in overburden (coarse gravel layers) were confirmed to have high K (hydraulic conductivity) values (2x10⁻² m/s to 8x10⁻¹ m/s), quickly stabilizing drawdowns, and impressive recovery characteristics (94 95% recovery in 75 min and 60 min).
- The well screened in bedrock had a K value 3 orders of magnitude less than the overburden wells (2x10-5 m/s), however, also showed impressive recovery (88% recovery in 60 min).
- Groundwater testing results indicated relatively good overall chemical quality, which would require commercial water treatment for several aesthetic parameters.
- Off-site impacts to neighboring water users or surface water resources were not expected in view of the large available drawdown in the tested wells.
- Adequate groundwater supply was inferred for the 20-lot development on the basis of the long duration pumping test results at the three well locations.
- The permeable overburden gravel layers were determined to have the best potential for groundwater source on the property considered.

The results of the 2018 Report speak favorably to the prospect of adequate water supply and quality on the Subject Property. To confirm Wills' preliminary findings, on-site testing was completed by Wills in six newly installed O. Reg. 903 Water Supply Wells in October/November 2023, and September 2024 as presented in the following sections.

5.3 2023 Pumping tests

Herb Lang Well Drilling Ltd. (HLWD) installed 3 new O.Reg. 903 Water Supply Wells (MECP Well ID A377795, A377796 and A377799) on the Subject Property on October 17, October 12 and October 6, 2023, respectively. The location of these wells is shown on **Figure 2b** and the corresponding MECP Well Records are included in **Appendix F**.

A 6-hour pumping test was conducted in each of the three wells on October 31 (A377795), November 2 (A377796) and November 8 (A377799), 2023. The pumping tests were conducted to confirm the performance of the wells over sustained pumping activity, evaluate the cumulative effect of future on-site pumping activities on groundwater availability, evaluate the potential for interference with onsite and

neighboring groundwater taking activities, and to enable the collection of groundwater samples for quality analysis.

During each pumping test, drawdown and groundwater level fluctuations were monitored using:

- Solinst Level Loggers and confirmatory manual measurements in the newly installed O. Reg. 903 Water Supply Wells (A377795, A377796 and A377799)
- Manual measurements using a Solinst water level tape in the existing dug well on the neighbor's property located 5868 County Road 65, Port Hope, ON L1A 3V5, shown on Figure 2a. It is noted that measurements in the neighbor's well were taken through an access port in concrete casing, slightly above ground surface. Due to lack of better access to the well and interaction with the pumping equipment present in the well, the well depth could not be confirmed.

5.3.1 A377795 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 L/min (i.e. 5 GPM US). The pumping rate was increased to 37.8 L/min (i.e. 10 GPM US) after 7 minutes of pumping, then to 45.4 L/min (i.e. 12 GPM US) after 14 minutes and was maintained at that rate until completion of the 6-hour long test.

Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 4**.

Date: Oct. 31, 2023 Well Depth **Well Depth Static Water Level** Well ID Stick up (mbtop) (mbg) (mbg) **Pumping Well** A377795 11.70 11.19 0.51 mag 3.40 **Observation Well** A377796 12.24 11.64 3.03 0.60 mag 9.71 A377799 10.32 0.61 mag 3.08 0.13 4.58 Neighbor's well unknown unknown

Table 4– A377795 Well Pumping Test Details

 $\textbf{mbtop} - \text{metres below top of pipe}, \hspace{0.2cm} \textbf{mbg} - \text{metres below ground}, \hspace{0.2cm} \textbf{mag} - \text{metres above ground}$

Hydrographs for the Pumping Well and Observation Wells are included in Appendix G.

Pumping test details are summarized in **Table 5** below.

Table 5- Pumping Test Summary Well A377795

	Pumping Rate (L/min)	Time (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)	
Step Test	18.9	7	1.07	4.47	132.3	
siep iesi	37.8	7	1.82	5.22	396.9	
Constant Rate	45.4	346	2.33	5.73	16,105.3	
Recovery Time			% Recovery			
	3.5 minutes		90%			

The following observations are provided with respect to the A377795 well pumping test results:

- The pumping rate applied for the majority of the test (346 minutes) represents more than twice the peak demand rate considered in MECP Guideline D-5-5 for a residential lot (18.75 L/min).
- Water levels monitored at Observation Wells A377796 and A377799 showed limited response to the pumping activity, dropping approximately 0.02 m and 0.03 m respectively.
- Water levels monitored at the neighbor's dug well showed limited fluctuations with a maximum measured drawdown of 0.10 m. These limited fluctuations are attributed to the use of the well by its owners during the test.
- 90% recovery was observed in the pumping well within 4 minutes of stopping the pump.

Potential interactions between pumping activities both on the Subject Property and neighboring properties are discussed further in **Section 5.5**.

5.3.2 A377796 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 L/min (i.e. 5 GPM US). The pumping rate was increased to 45.4 L/min (i.e. 12 GPM US) after 14 minutes of pumping then decreased to 37.8 L/min (i.e. 10 GPM US) after 16 minutes and was maintained at that rate until completion of the 6-hour long test.

Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 6**.

Table 6 – A377796 Well Pumping Test Details

			Date:	Nov. 2, 2023					
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up	Static Water Level (mbg)					
	Pumping Well								
A377796	12.24	11.64	0.60 mag	3.04					
	Obs	servation Well							
A377795	11.70	11.19	0.51 mag	3.26					
A377799	10.32	9.71	0.61 mag	3.09					
Neighbor's well	unknown	unknown	0.13	4.64					

Hydrographs for the Pumping Well and Observation Wells are included in Appendix G.

Pumping test details are summarized in **Table 7**.

Table 7- Pumping Test Summary Well A377796

	Pumping Rate (L/min)	Time (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)
Step Test	18.9	14	2.14	5.18	264.6
siep iesi	45.4	2	4.36	7.40	355.4
Constant Rate	37.8	344	4.17	7.21	13,358.6
Recovery Time			% Recovery		
	6 minutes		90%		

The following observations are provided with respect to the A377796 well pumping test results:

- The pumping rate applied for the majority of the test (344 minutes) represents more than twice the peak demand rate considered in MECP Guideline D-5-5 for a residential lot (18.75 L/min).
- Water levels monitored at Observation Wells A377795 and A377799 showed limited response to the pumping activity, dropping approximately 0.01 m and 0.02 m respectively.
- Water levels monitored at the neighbor's dug well showed limited fluctuations with a maximum measured drawdown of 0.02 m. These limited fluctuations are attributed to the use of the well by its owners during the test.
- 90% recovery was observed in the pumping well within 6 minutes of stopping the pump.

Potential interactions between pumping activities both on the Subject Property and neighboring properties are discussed further in **Section 5.5**.

5.3.3 A377799 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 L/min (i.e. 5 GPM US). The pumping rate was increased to 37.8 L/min (i.e. 10 GPM US) after 4 minutes of pumping, then to 45.4 L/min (i.e. 12 GPM US) after 12 minutes and was maintained at that rate until completion of the 6-hour long test.

Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 8**.

			,							
			Date:	Nov. 8, 2023						
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up	Static Water Level (mbg)						
	Pumping Well									
A377799	10.32	9.71	0.61 mag	3.19						
	Obs	servation Well								
A377795	11.70	11.19	0.51 mag	3.29						
A377796	12.24	11.64	0.60 mag	3.08						
Neighbor's well	unknown	unknown	0.13	5.21						

Table 8– A377799 Well Pumping Test Details

Hydrographs for the Pumping Well and Observation Wells are included in Appendix G.

Pumping test details are summarized in **Table 9**.

Table 9- Pumping Test Summary Well A377799

	Pumping Rate (L/min)	Time (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)	
Step Test	18.9	4	0.88	3.89	75.6	
siep iesi	37.8	8	1.62	4.81	378	
Constant Rate	45.4	348	2.06	5.25	16.177.2	
Recovery Time			% Recovery			
3 minutes			90%			

The following observations are provided with respect to the A377799 well pumping test results:

- The pumping rate applied for the majority of the test (348 minutes) represents more than twice the peak demand rate considered in MECP Guideline D-5-5 for a residential lot (18.75 L/min).
- Water levels monitored at Observation Wells A377795 and A377796 showed limited response to the pumping activity, dropping approximately 0.03 m and 0.04 m respectively.
- Water levels monitored at the neighbor's dug well showed limited fluctuations with a maximum amplitude of 0.08 m. The lowest groundwater level was measured before pumping started. These limited fluctuations are attributed to the use of the well by its owners during the test.
- 90% recovery was observed in the pumping well within 3 minutes of stopping the pump.

Potential interactions between pumping activities both on the Subject Property and neighboring properties are discussed further in **Section 5.5**.

5.4 2024 Pumping tests

HLWD installed three O. Reg. 903 Water Supply Wells (A395881, A395882 and A395883) on the Subject Property on August 8, August 6 and July 31, 2024, respectively. The location of these wells is shown on **Figure 2b** and the corresponding MECP Well Records are included in **Appendix F**.

Wells A395882 and A395883 were installed in bedrock at a depth of approximately 49 mbg, and A395881 was installed in a gravel layer at a depth of approximately 24 mbg.

A 6-hour duration pumping test was conducted in each of the three wells on September 9 (A395882), September 10 (A395883) and September 11 (A395881), 2024. The pumping tests were conducted to confirm the performance of the wells over sustained pumping activity, evaluate the cumulative effect of future on-site pumping activities on groundwater availability, the potential for interference with onsite and neighboring groundwater taking activities, and to enable the collection of groundwater samples for quality analysis.

During each pumping test, drawdown and groundwater level fluctuations were monitored using:

- Solinst Level Loggers and confirmatory manual measurements in the O. Reg. 903 Water Supply Wells installed in 2024 (A395881, A395882 and A395883) and the O. Reg. 903 Water Supply Wells installed in 2023 (A377795, A377796 and A377799).
- Manual measurements using a Solinst water level tape in monitor wells BH107-22 and BH110-22, installed by Cambium in 2022 at a depth of approximately 6 mbg.

5.4.1 A395882 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 liters per minute (L/min) (5 US gallons per minute [GPM]). Considering the rapid dewatering of the well observed while pumping at this rate, the pumping rate was decreased to 15.1 L/min (4 GPM US) after 12 minutes of pumping, then to 11.4 L/min (i.e. 3 GPM) after 23 minutes of pumping, and was maintained at that rate until completion of the test. Pumping was stopped after 420 minutes. Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 10**.

Table 10 – A395882 Well Pumping Test Details

			Date:	Sept. 9, 2024
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up (mag)	Static Water Level (mbg)
	Pu	mping Well		
A395882	49.10	48.49	0.61	9.54
	Obs	ervation Wells		
A395883	49.10	48.50	0.60	9.80
A395881	24.40	23.77	0.63	10.43
A377795	11.70	11.19	0.51	2.94
A377796	12.24	11.64	0.60	2.72
A377799	10.32	9.71	0.61	2.81
BH107-22	6.76	5.79	0.97	2.33
BH110-22	6.58	5.67	0.91	2.43

mbtop – metres below top of pipe, mbg – metres below ground, mag – metres above ground

Hydrographs for the Pumping Well and Observation Wells are included in **Appendix G.** Pumping test details are summarized in **Table 11** below.

Table 11 – Pumping Test Summary Well A395882

	Pumping Rate (L/min)	Duration (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)
	18.9	12	6.16	No stabilization	226.8
Step Test	15.1	11	8.80	No stabilization	392.9
Constant Rate	11.4	397	12.90	22.44*	4,918.7
Recovery Time			% Recovery		
50 minutes				90%	

^{*}During the last 30 minutes of the test, groundwater level was still dropping at a relatively slow rate of 0.10 meters per hour (m/h).

The following observations are provided with respect to the A395882 pumping test results:

- The drawdown observed at the initial rate of 18.9 L/min suggests complete dewatering of the well could occur within 76 minutes of starting the pump. Similarly, the drawdown observed at the subsequent rate of 15.1 L/min suggests that complete dewatering of the well would occur before the end of the minimum test duration required by Guideline D-5-5. Therefore, the pumping rate for this test was decreased to 11.4 L/min (3 GPM) and the duration of the test was adjusted to 420 minutes to meet Guideline D-5-5 requirements. The rate of 11.4 L/min, applied during the majority of the test, is consistent with the recommended pumping rate provided by HLWD on the A395882 MECP record.
- 90% recovery was observed in the pumping well within 50 minutes of stopping the pump.
- Water levels monitored at all the observation wells showed no response to the pumping activity, except for well A395883.
- A maximum drawdown of 1.04 m was measured in observation well A395883
 after 426 minutes of starting the pump in well A395882 (i.e. 6 minutes after
 pumping was stopped). Similar to what was observed in the pumping well, the
 groundwater level in observation well A395883 was still decreasing at a slow rate
 of approximately 0.04 m/h during the last 30 minutes of pumping.

Based on the results obtained during the pumping test in A395882:

- Interactions due to pumping between O. Reg. 903 Water Supply Wells installed in bedrock are anticipated.
- Significant interactions due to pumping between wells installed in bedrock and wells installed in the shallower on-site aquifers (i.e. 10-12 mbg and 22-24 mbg) are not anticipated.

• If proposed residential properties on the Subject Property are supplied by a bedrock well, secondary storage (i.e. cistern) will be required to compensate for the relatively low yields and meet peak water demand.

Potential interactions between pumping activities both on the Subject Property and neighboring properties are discussed further in **Section 5.5**.

5.4.2 A395883 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 L/min (5 GPM). Considering the rapid dewatering of the well observed while pumping at this rate, the pumping rate was decreased to 15.1 L/min (4 GPM) after 16 minutes of pumping, then to 11.4 L/min (3 GPM) after 29 minutes of pumping, and was maintained at that rate until completion of the test. Pumping was stopped after 413 minutes. Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 12**.

Table 12 – A395883 Well Pumping Test Details

			Date:	Sept. 10, 2024
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up (mag)	Static Water Level (mbg)
	Pι	mping Well		
A395883	49.10	48.50	0.60	9.81
	Obs	ervation Wells		
A395882	49.10	48.49	0.61	9.89
A395881	24.40	23.77	0.63	10.44
A377795	11.70	11.19	0.51	2.95
A377796	12.24	11.64	0.60	2.73
A377799	10.32	9.71	0.61	2.82
BH107-22	6.76	5.79	0.97	2.33
BH110-22	6.58	5.67	0.91	2.44

mbtop - metres below top of pipe, mbg - metres below ground, mag - metres above ground

Hydrographs for the Pumping Well and Observation Wells are included in **Appendix G**. Pumping test details are summarized in **Table 13** below.

Table 13 – Pumping Test Summary Well A395883

	Pumping Rate (L/min)	Duration (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)
Stop Tost	18.9	16	7.76	No stabilization	302.4
Step Test	15.1	13	8.63	No stabilization	498.7
Constant Rate	11.4	384	10.59	20.40*	4,876.3
Recovery Time			% Recovery		
145 minutes				90%	

^{*} During the last 30 minutes of the test, groundwater level was still dropping at a relatively slow rate of 0.14 meters per hour (m/h).

The following observations are provided with respect to the A395882 pumping test results:

- The drawdown observed at the initial rate of 18.9 L/min suggests complete dewatering of the well would occur within 80 minutes of starting the pump. Similarly, the drawdown observed at the subsequent pumping rate of 15.1 L/min suggests complete dewatering of the well could occur before the end of the minimum test duration required by Guideline D-5-5. Therefore, the pumping rate for this test was decreased to 11.4 L/min (3 GPM) and the duration of the test was adjusted to 413 minutes to meet Guideline D-5-5 requirements. The rate of 11.4 L/min applied during the majority of the test is consistent with the recommended pumping rate provided by HLWD on the A395883 MECP record.
- 90% recovery was observed in the pumping well within 145 minutes of stopping the pump.
- Water levels monitored at all the observation wells showed no response to the pumping activity, except for A395882.
- A maximum drawdown of 0.94 m was measured in observation well A395882 after 416 minutes of starting the pump in A395883 (i.e. 3 minutes after pumping was stopped). Similarly to what was observed in the pumping well, the groundwater level in A395882 was still decreasing at a slow rate of approximately 0.04 m/h during the last 30 minutes of pumping.

Based on the results obtained during the pumping test in A395883:

- Interactions due to pumping between O. Reg. 903 Water Supply Wells installed in bedrock are anticipated.
- Significant interactions due to pumping between wells installed in bedrock and wells installed in the shallower aquifers identified on the Subject Property (i.e. 10-12 mbg and 22-24 mbg) are not anticipated.

• If proposed residential properties on the Subject Property are supplied by a bedrock well, secondary storage (i.e. cistern) will be required to compensate for the relatively low yields and meet peak water demand.

Potential interactions between pumping activities both on the Subject Property and neighboring properties are evaluated further in **Section 5.5**.

5.4.3 A395881 Well Test

Following installation of the level loggers, pumping started at a rate of 94.6 L/min (25 GPM). This rate was maintained during the entirety of the 6-hour duration pumping test. Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 14**.

Table 14 – A395881 Well Pumping Test Details

			Date:	Sept. 11, 2024
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up (mag)	Static Water Level (mbg)
	Pu	mping Well		
A395881	24.40	23.77	0.63	10.44
	Obs	ervation Wells		
A395882	49.10	48.49	0.61	9.86
A395883	49.10	48.50	0.60	10.90
A377795	11.70	11.19	0.51	2.95
A377796	12.24	11.64	0.60	2.74
A377799	10.32	9.71	0.61	2.83
BH107-22	6.76	5.79	0.97	2.34
BH110-22	6.58	5.67	0.91	2.45

mbtop – metres below top of pipe, **mbg** – metres below ground, **mag** – metres above ground

Hydrographs for the Pumping Well and Observation Wells are included in **Appendix G.** Pumping test details are summarized in **Table 15** below.

Table 15 – Pumping Test Summary Well A395883

	Pumping Rate (L/min)	Duration (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)
Constant Rate	94.6	360	0.48*	10.92	34,056.00
	Recovery Time		% Recovery		
27.5 minutes				90%	

^{*}Maximum drawdown was measured after 356 minutes of pumping. At the 6-hour mark, the measured drawdown was 0.465 m.

The following observations are provided with respect to the A395881 pumping test results:

- The pumping rate applied for the test represents more than 5 times the peak demand rate considered in MECP Guideline D-5-5 for a residential lot (18.75 L/min).
- Considering a pump installation depth of 20.7 mbg as recommended on the MECP record for A395881 (i.e. approximately 1.83 m above the top of the well's screen), the maximum drawdown observed in well A395881 during the test represents less than 5 % of the available drawdown.
- 90% recovery was observed in the pumping well within 28 minutes of stopping the pump.
- Water levels monitored at all the observation wells showed no response to the pumping activity in well A395881.

Based on the results obtained during the pumping test in well A395881:

- A395881 is more than capable of supplying sufficient groundwater supply to a single dwelling.
- Significant interactions between wells installed in the same stratigraphic unit as A395881 to supply individual dwellings are not anticipated.
- Significant interactions between wells installed in the same stratigraphic unit as A395881 and wells installed in the same stratigraphic units as the observation wells included in the test are not anticipated.

Potential interactions between pumping activities both on the Subject Property and neighboring properties are discussed further in **Section 5.5**.

5.5 Hydrogeological modelling

The proposed development includes 38 residential lots, as shown on the Preliminary Draft Plan dated August 15, 2024, included in **Appendix A-4**.

Based on Guideline D-5-5, the drinking water requirement for a residential lot is 2.25 m³/day. Results obtained during the pumping tests completed by Wills in October/November 2023 on wells A377795, A377796 and A377799, and in September 2024 on wells A395881, A395882 and A395883 suggest that each tested well can support the anticipated demand on individual residential lot, with supplementary storage systems proposed for wells constructed in bedrock.

Wills developed an eight-layer three-dimensional computer groundwater model (Model) to evaluate the capacity of the various on-site aquifers to meet the water taking requirements of the proposed 38 residential lots, including the potential for interference between pumping activities both on-site and on neighboring properties.

Due to uncertainty of the lateral extent and water bearing capacity of the coarse gravel formation intercepted at A395881, the Model was used to evaluate several scenarios with respect to the anticipated installation depths of the future O. Reg. 903 Water Supply Wells on the Subject Property:

- Scenario 1: All 38 wells installed in bedrock, pumping for 6 hours in each well simultaneously, at a rate of:
 - o Scenario 1.1: 18.75 L/min
 - Scenario 1.2: 11.36 L/min
- Scenario 2: 5 wells installed in a gravel layer similar to the one intercepted by A395881 (wells associated with lots 11 through 15 in the southeast corner of the Subject Property), and the remaining 33 wells installed in bedrock.
 - Scenario 2.1: pumping at 18.75 L/min for 6 hours in each of the 38 wells simultaneously
 - Scenario 2.2: pumping at 18.75 L/min in each of the 5 wells installed in the gravel layer, and at 11.36 L/min in each of the 33 wells installed in bedrock, for 6 hours, simultaneously
- Scenario 3: All 38 wells installed in the intermediate aquifer intercepted by A377795, A377796 and A377799, pumping for 6 hours at a rate of 18.75 L/min in each of the 38 wells simultaneously.

The pumping rates used in the scenarios described above are based on Wills' pumping tests results and the Guideline D-5-5 requirement for a minimum pumping rate of 18.75 L/min over a minimum duration of 6 hours, for an individual residential lot.

The approximate location of the 38 virtual wells used in the Model is shown on **Figure 4**. The following sections describe the Model used to evaluate Scenarios one through three and the results obtained for each scenario.

Elevations provided in the following sections are approximate as no survey of ground elevations was undertaken at the Subject Property. Elevations were inferred from a topographic map of the Subject Property. Ground surface at each of the three wells installed in 2024 (A395881, A395882 and A395883) was estimated to be 164.0 masl.

5.5.1 Aquifer Parameters

Wells A395882 and A395883 were installed in bedrock, as little available water was found in the alternating sediments of varying texture and hydraulic conductivity encountered above bedrock at these two locations. In wells A395882 and A395883, bedrock was encountered at a depth of 43.59 mbg (i.e. at an approximate elevation of 120.72 masl). A thin layer (approximately 0.3 metres [m]) of fractured bedrock and gravel was encountered on top of the bedrock and appeared to be water bearing. Pumping tests were carried out in both wells to determine aquifer parameters.

Well A395881 encountered a permeable water-bearing gravel layer at a depth of 22.3 mbg (i.e. elevation 141.75 masl). The gravel formation was drilled to 23.8 m mbg and a screen installed from 22.6 to 23.8 m mbg. Following construction, a preliminary yield test was conducted at a rate of 78.6 m³/day (i.e. 54.6 L/min). Based on the MECP record for A395881, this gravel layer is at least 1.5 m thick. Observations by the driller during installation of the well suggest that the gravel formation may have extended at least 0.3 m below the installation depth and had considerable yield.

A lateral extension of the permeable gravel formation encountered at a depth of 22.3 mbg in well A395881 appeared to be present in well A395882 at a depth of 25.91 mbg, with a thickness of approximately 0.91 m. In well A395882 however, this formation contains more sand and did not yield sufficient groundwater. A cross section (A-A') showing the inferred extent of the gravel formation between wells A395881 and A395882 is included as **Figure 5**.

Similarly, the sand and gravel formation encountered in well A395883 at a depth of 21.95 mbg (5.48 m thick) appears to be a lateral extension of the permeable gravel encountered in well A395881. However, similar to what was observed at well A395882, this formation at well A395883 did not yield sufficient groundwater. Well A395883 is approximately 85 m from well A395881.

Figure 2b shows the location of all O. Reg. 903 Water Supply Wells installed on the Subject Property as part of Wills' Study, as well as wells TW1, TW2 and TW3 installed in 2018 on a neighboring property to the south.

Information regarding wells TW1 through TW3 used in Wills' assessment is based on Ted Rannie's 2018 Report. The MECP well records included in this report indicate that TW1, TW2 and TW3 are assigned Well Tag Numbers A248943, A248945 and A248942 respectively.

Based on the review of the 2018 Report, it appears that the gravel layer encountered in well A395881 was also encountered in TW2 and TW1 with respective thicknesses of approximately 1 m (TW2) to 10 m (TW1). Similarly to the case between wells A395881 and A395883, sufficient groundwater was not found in the gravel formation in TW1, according to the drilling contractor, while TW2 yielded relatively high volumes of water from the same formation. Well TW3 did not encounter this gravel layer during drilling. A cross section (B-B') showing the inferred extent of the gravel formation between wells A395883 and TW1 is included as **Figure 6**.

A plausible explanation for the existence of this permeable gravel formation is that it is a meltwater channel (tunnel channel) deposited during the waning of the last ice age. The gravel in well A395881 and TW2 may have been deposited in a high energy environment at the center of the channel and the fast-flowing water washed away all the fine materials, leaving coarse gravel. The gravel deposits in wells A395882, A395883 and TW1 represent the lower energy depositional sides of the channel with lower permeability.

The static groundwater levels measured in wells A395881, A395882 and A395883 range from approximately 9.5 to 10.5 mbg, and are significantly higher than where water was encountered during drilling. This indicates a confined or semi-confined aquifer. A semi-confined aquifer indicates that leakage from the overlying low permeability aquitard contributes to well yield. Data obtained during the pumping tests completed by Wills in September 2024 (drawdown data versus pumping rates) was analyzed to determine transmissivity "T" and storativity, "S" of the aquifers intersected by wells A395881, A395882 and A395883. Aquifer parameters were derived from curve matching using the Hantush method for leaky confined aquifers, which provided the best curve match. Therefore, results obtained during Will's Study suggest that the aquifers intersected by wells A395881, A395882 and A395883 on the Subject Property are semi-confined with leakage from above and below.

Table 16 shows the aquifer parameters derived from the method described above.

Table 16 – Derived Aquifer Parameters – Subject Property

Well ID	Pumping Rate (m³/d)	Transmissivity (T) (m²/d)	Storativity (S)	Maximum drawdown (m)	Test length (min)	Aquifer Thickness (m)	Hydraulic Conductivity (K) (m/d)				
	September 9, 2024 Test – Pumping Well (PW) = A395882										
A395882	16.35	1.49	9.54E-5	12.9	420	5.18	0.29				
A395883		3.38	2.93E-05	1.04	420	1.22	2.77				
A395881		no response									
		Septemb	er 10, 2024	l Test – PW =	A395883						
A395883	16.35	0.95	0.045	10.59	413	1.22	7.5				
A395882		3.11	4.1E-5	0.94	413	5.18	6.8				
A395881		no response			-						
		Septembe	er 11, 2024	Test – PW =	A3395881						
A395881	136.3	196.6	0.035	0.465	360	1.52	129.3				
A395883		no response									
A395882		no response									

The results show a transmissivity and hydraulic conductivity of 196.6 m²/d and 129.3 m/d respectively for the coarse gravel layer encountered in well A395881. The fractured bedrock and bedrock encountered in A395883 and A395882 indicate a much lower transmissivity and hydraulic conductivity of 0.95 to 3.38 m²/d and 0.29 to 7.5 m/day respectively. A high transmissivity and hydraulic conductivity imply a high water yield from wells. In contrast low transmissivity and hydraulic conductivity imply low water yields from wells.

5.5.2 Comparison with the Results Obtained on the Neighbouring Property

Data from the 2018 Report pertaining to the pumping tests completed in wells TW1 and TW3 on the neighboring property to the south was also analysed to derive aquifer parameters. The results of the analysis are summarized in **Table 17**. Data for the pumping well TW2 was not available.

Table 17 – Derived Aquifer Parameters – Property to the Sout	h
--	---

Well ID	Pumping Rate (m³/d)	Transmissivity (T) (m²/d)	Storativity (S)	Maximum drawdown (m)	Test length (min)	Aquifer Thickness (m)	Hydraulic Conductivity (K) (m/d)				
	PW = TW1*										
TW1	28.22	0.50	0.20	26.17	420	2.7	0.185				
	PW = TW2*										
TW2	163.58	no data		3.35	480	1.2					
TW1		49.9	1.08E-6	0.20	480	2.7	18.5				
TW3		1.53	8.4E-12	22.61	480	3.1	4.74				
	PW = TW3*										
TW3	109.0	0.42	7.31E-5	22.55	482	3.1	0.135				
TW3**		5.36				3.1	1.73				

^{*}TW1 pumping in sand and gravel overlying bedrock; TW2 pumping from intermediate depth coarse gravel; TW3 pumping from limestone bedrock.

On the Subject Property, pumping at 136.3 m³/day in well A395881 produced a drawdown of 0.465 m after 6 hours in the coarse gravel layer. No response was detected during the test in any other O. Reg. 903 well installed on the Subject Property, including wells A395882 and A395883 installed in bedrock. Pumping in one of the bedrock wells influenced the other non-pumping observation well installed in bedrock, implying a fairly extensive hydraulic connection in the bedrock. However, pumping in the wells installed in bedrock had no effect on any of the other wells installed in the overburden.

^{**}Hvorslev Test 2018

It is likely that the hydraulic conductivity of the coarse gravel layer in the area of TW2 is similar to the hydraulic conductivity of the gravel layer encountered in well A395881. The pumping test in TW2 also produced a drawdown effect of 0.20 m in TW1, in the gravel layer just overlying bedrock 132.4 m away from TW2, and a drawdown of 22.6 m in TW3 in the bedrock 168.1 m away from TW2. This indicates some hydraulic connection between the bedrock, the gravel layer overlying bedrock and the shallower coarse gravel layer. The coarse gravel layer is separated from the bedrock and overlying gravel by 6.5 m of sandy silt in TW1. The coarse gravel layer does not occur in TW3.

5.5.3 Model Construction and Calibration

A detailed computer three-dimensional groundwater model was constructed based on the results of subsurface investigations and aquifer testing. Eight layers were input spanning the depth from surface (Layer 1) to the bottom of the deepest wells in the bedrock (Layer 8). A 1:10,000 topographic map was used as the basis of the model so that hydraulic boundaries (e.g. rivers and wetlands) at their respective elevations could be incorporated into the model as boundary conditions.

Aquifer parameters derived from the pumping tests completed in 2023 in wells A377795, A377796 and A377799 were input into the model in Layer 3 (sand). Aquifer parameters derived from the pumping tests completed in 2024 were input into the model in Layer 5 (coarse gravel formation) and Layer 8 (bedrock).

Hydraulic conductivity was derived from transmissivity divided by the thickness of the aquifer. Storativities used in the model were those derived from the pumping tests in Layers 3, 5 and 8. Specific yield was set at 0.25 which is characteristic of the surficial material encountered. Hydraulic parameters for the low permeability layers (silt and clay) were estimated based on professional experience. Recharge was estimated at 213 mm/yr based on the water balance analysis (existing conditions) completed by Wills' and discussed in **Section 6.0**.

Initially, a steady-state model was set up and calibrated to the static water level measured in wells A395881, A395882, A395883, TW1, TW2 and TW3. This model was then converted to a transient (time-based) model with two stress periods (pumping periods). The first stress period was run to produce quasi steady-state conditions to obtain simulated static water level elevations. The second stress period was for the length of the pumping tests, usually 6-hours (0.25 days). Each pumping test was simulated in the model and parameters adjusted until a reasonable match between simulated and observed drawdown was obtained. The Peaceman correction translates the simulated drawdown in the model cell to the simulated drawdown in the pumping well, which has a significantly smaller diameter than the model cell. The model predictions of Peaceman corrected simulated drawdowns are considered excellent compared to the observed drawdowns. The results of the calibration analysis described above are summarized in **Table 18**.

Table 18 – Simulated and Observed Drawdowns

Well ID*	Simulated Static Water Level (masl)	Simulated Pumping Level (masl)	Simulated Drawdown (m)	Peaceman Corrected Drawdown (m)	Observed Drawdown (m)
PW A395881	154.61	154.40	0.21	0.41	0.47
OBS A395882	154.64	154.22	0.42		0.94
PW A395883	154.49	150.48	4.0	10.59	9.27

^{*}PW: Pumping Well; OBS: Observation Well

Well A395882 was an observation well (OBS A395882) during the pumping test on well A395883 (PW A395883). The match between simulated corrected drawdowns and observed drawdowns are considered very good.

This calibrated and verified (with pumping test data) model simulated drawdowns in the 38 proposed domestic wells based on the pumping scenarios described in **Section 5.5**. Results obtained are described in the following sections.

5.5.4 Scenario 1 - Evaluation

In Scenario 1, all 38 wells are installed in bedrock (Layer 8). The model was used to simulate drawdowns after pumping for 6 hours in each well simultaneously at a rate of:

Scenario 1.1: 18.75 L/minScenario 1.2: 11.36 L/min

The proposed 38 wells pumping in relatively close proximity will interfere with each other to some degree. The drawdown in each well (assuming the same pumping rate) will vary depending on the hydraulic conductivity of the bedrock and the proximity of each well to those around it. Thus, to determine the effect of all wells in the bedrock, two wells at the approximate centre of the well field were chosen to compare results of the simulations. These selected wells are designated in **Table 19** and subsequent tables by the model row (R) and column (C) in which the wells are located.

Simulated drawdowns and elevations obtained for Scenario 1.1 and Scenario 1.2 are summarized in **Table 19** and **Table 20** respectively.

Table 19 – Scenario 1.1 – Simulation Results

		Simulated Peaceman Corrected			Estimated	
Well	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R60 C66	154.02	129.33	24.69	40.05	113.97	120.41
R63 C57	154.73	128.22	26.51	41.10	112.92	120.41

The results obtained for Scenario 1.1 suggest that pumping in all 38 wells installed in bedrock for 6 hours at a rate of 18.75 L/min would dewater the wells. Scenario 1.1 is therefore considered not feasible.

Table 20 – Scenario 1.2 – Simulation Results

		Simulated		Peaceman	Estimated	
Well	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R60 C66	153.99	139.83	14.16	23.47	130.52	120.41
R63 C57	154.70	138.16	16.54	25.60	129.10	120.41

The results obtained for Scenario 1.2 suggest that the bedrock is capable of sustaining a pumping rate of 11.36 L/min (16.36 m³/d) for 6 hours each day without dewatering the wells and with minimum drawdown effects on adjacent properties as shown of **Figure 7**. Please note that the Peaceman corrected drawdown refers only to the drawdown in each well. Between wells the simulated drawdowns shown in **Table 20** and those shown in **Figure 7** will occur.

5.5.5 Scenario 2 – Evaluation

A simulation of all domestic wells pumping from the coarse gravel layer (model Layer 5) each at 18.75 L/min for 6 hours showed cumulative drawdowns of less than 1.0 m. Depending on the extent of this gravel layer and its water bearing capacity, the water needs of the Proposed Development could easily be met. However, as mentioned previously, the water bearing capacity of this layer varies from substantial water availability to no apparent water availability. The only way to confirm the existence and water bearing capacity of this gravel layer is to drill water wells to intercept it. It is likely that some of the wells drilled on the Subject Property will encounter this water bearing gravel layer. However, it is impossible to know how many of the 38 wells will intercept this layer. Therefore, a relatively conservative Scenario 2 was tested.

In Scenario 2, the 5 wells associated with lots 11 through 15 in the southeast corner of the Subject Property are installed in Layer 5 (coarse gravel formation) while the remaining 33 wells are installed in Layer 8 (bedrock). The model was used to simulate drawdowns after pumping for 6 hours at a rate of:

- Scenario 2.1: 18.75 L/min in each of the 38 wells simultaneously
- Scenario 2.2: 18.75 L/min in the 5 wells installed in Layer 5, and 11.36 L/min in the 33 wells installed in Layer 8, simultaneously

Simulated drawdowns and elevations obtained for Scenario 2.1 are summarized in **Table 21** and **Table 22**. As drawdowns are slightly different in all the wells due to their spacing, the drawdowns for representative wells are given in each layer.

Table 21 – Scenario 2.1 – Simulation Results – Layer 8

		Simulated		Peaceman	Estimated	
Groundwater Model Well ID	Static Water Level (masl)	ter Level Drawdowi vel (masl) (m)		Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R60 C66	153.99	130.68	23.31	32.62	121.37	120.41
R63 C57	154.71	128.87	25.84	34.90	119.81	120.41

Table 22 – Scenario 2.1 – Simulation Results – Layer 5

Groundwater Model Well ID	Simulated			Peaceman Corrected		Estimated
	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R68 C67	154.66	154.61	0.05	0.09	154.57	120.41
R74 C72	154.52	154.48	0.04	0.08	154.44	120.41

Pumping in 5 wells installed in Layer 5 has almost negligible effect on groundwater levels. However, the simulation of pumping 33 domestic wells at 18.75 L/min for 6 hours from the bedrock resulted in the water level in the bedrock wells declining to the level of the bedrock surface. It would be prudent to assume a safety factor and aim at maintaining a pumping water level of at least 5 metres above the bedrock surface. Therefore, based on the results of the simulation, scenario 2.1 is not sustainable.

Simulated drawdowns and elevations obtained for Scenario 2.2 are summarized in **Table 23** and **Table 24**.

Table 23 – Scenario 2.2 – Simulation Results – Layer 8

		Simulated	Peaceman Corrected			Estimated	
Groundwater Model Well ID	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)	
R60 C66	153.99	138.71	15.28	24.59	129.40	120.41	
R63 C57	154.70	138.68	16.02	25.08	129.62	120.41	

Table 24 – Scenario 2.2 – Simulation Results – Layer 5

		Simulated	Peaceman Correc			Estimated	
Groundwater Model Well ID	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)	
R68 C67	154.66	154.60	0.05	0.08	154.58	120.41	
R74 C72	154.52	154.48	0.04	0.06	154.46	120.41	

The results of the simulation suggest that Scenario 2.2 is sustainable.

5.5.6 Scenario 3 – Evaluation

In Scenario 3, all 38 wells installed in the model Layer 3 which corresponds to the intermediate aquifer intercepted by wells A377795, A377796 and A377799. Drawdowns and elevations were simulated after pumping at a rate of 18.75 L/min in each of the 38 wells simultaneously, for 6 hours.

Simulated drawdowns and elevations obtained for Scenario 3 are summarized in **Table 25**.

Table 25 – Scenario 3 – Simulation Results – Layer 3

		Simulated		Peaceman	Corrected	Estimated
Groundwater Model Well ID	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R60 C66	159.66	159.55	0.11	0.36	159.30	120.41
R63 C57	161.79	161.69	0.10	0.36	161.43	120.41

In Scenario 3, drawdown in the wells is less than 0.5 m and negligible between wells. The results of the simulation suggest that Scenario 3 is feasible.

5.6 Groundwater Quality

Two groundwater samples were collected from the pumping well during each pumping test. One sample was collected 1-hour into the pumping test and the second sample was collected at the 6-hour or 7-hour mark, prior to shutting off the pump. Samples were collected in dedicated sample bottles, kept in a cooler with ice and transported to SGS immediately following completion of the field activities. Analytical results were compared to the ODWQS. The Certificates of Analysis provided by SGS are included in **Appendix H**.

5.6.1 2023 Pumping Tests

The quality of the groundwater samples collected during the pumping tests completed in 2023 complies with most ODWQS, except for the following:

A377795 Well

- Turbidity in both the 1-hour and 6-hour samples
- Total Coliform in the 6-hour sample

Exceedances of Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

• Organic Nitrogen and hardness in both the 1-hour and 6-hour samples.

A377796 Well

• Turbidity in both the 1-hour and 6-hour samples

Exceedances of Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

• Hardness and iron in both the 1-hour and 6-hour samples.

A377799 Well

• Total Coliform in both the 1-hour and 6-hour samples

Exceedances of Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

• Hardness in both the 1-hour and 6-hour samples.

Sources for coliform can be multiple and not one specific source can be identified with certainty based on available information. However, the wells are installed on farmed land which was covered in crops when the pumping tests were completed. Animal manure may have been used in this field which may have caused the contamination of the samples at surface during sampling or during well construction. Similarly, fertilizer high in nitrogen may have been used, which could explain the presence of Organic Nitrogen in the samples collected from well A377795.

Water treatment systems for the Proposed Development should consider the exceedances noted in this section. Commercial filtration and disinfection methods may be used to effectively remove metals and inactivate any harmful protozoa, bacteria and viruses, and commercial water softening may be used to treat elevated levels of hardness.

It is noted that nitrate concentrations for all tested samples collected from wells A377795, A377796 and A377799 met the ODWQS.

5.6.2 2024 Pumping Tests

The quality of the groundwater samples collected during the pumping tests complies with most ODWQS, except for the following:

A395881 Well

- Turbidity in both the 1-hour and 6-hour samples
- Total Coliform in both the 1-hour and 6-hour samples (1 cfu/100 ml)

Exceedances of the ODWQS Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

- Colour in the 6-hour sample
- Hardness and Iron in both the 1-hour and 6-hour samples

A395882 Well

- Turbidity, Sodium and Total Coliform in both the 1-hour and 7-hour samples
- E. coli in the 1-hour sample

Exceedances of the ODWQS Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

- Colour, Hardness, Iron and Chloride in both the 1-hour and 7-hour samples
- Manganese in the 1-hour sample

A395883 Well

- Turbidity, Sodium and Total Coliform in both the 1-hour and 7-hour samples
- E. coli in the 1-hour sample

Exceedances of Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

- Colour, Hardness, Iron, Manganese and Chloride in both the 1-hour and 7-hour samples
- Aluminum in the 1-hour sample

Sources for Total Coliform and *E. coli* can be multiple and not one specific source can be identified with certainty based on available information. However, the wells are installed on recently farmed land. Animal manure may have been used during agricultural operations, which may have caused the contamination of the samples at surface during sampling or during well construction.

Water treatment systems for the Proposed Development should consider the exceedances noted in this section. Commercial filtration and disinfection methods may be used to effectively remove metals and inactivate any harmful protozoa, bacteria and viruses, and commercial water softening may be used to treat elevated levels of hardness.

It is noted that nitrate was not detected in any of the samples collected from wells A395881, A395882 and A395883.

5.6.3 Nitrate Concentrations in Groundwater

Table 26 summarizes nitrate concentrations in groundwater samples collected on the Subject Property by Wills between October 2022 and September 2024. Certificates of Analysis provided by SGS for all the sampling events listed below are included in **Appendix H**.

Table 26 – Nitrate concentrations in groundwater on the subject Property

Well ID	Installation	Well Depth	Nitra	te Conce	ntrations (mg/L)
date (mbg)		Oct. 2022	Oct. 2023	Dec. 2023	Sept. 2024	
	Surficial Aqui	fer (approxi	mate dep	th 3-6 mb	g)	
MW22-08	2022-09-23	3.00	4.35			
BH101-22	2022-09-23	5.73			8.84	8.67
BH107-22	2022-09-23	5.79	0.68		0.188	0.17
BH110-22	2022-09-23	5.67	0.39		2.72	4.81
	Intermediate Aqu	uifer (approx	cimate de	pth 10-12	mbg)	
A377795	2023-10-17	11.19		5.69*		1.18
A377796	2023-10-12	11.64		0.11*		0.09
A377799	2023-10-06	9.71		1.73*		1.82
D	Deep Overburden Aquifer (approximate depth 22-24 mbg)					
A395881	2024-08-08	23.77				<0.06*
E	Bedrock Aquifer (a	pproximate	depth to	bedrock 4	13 mbg)	
A395882	2024-08-06	48.49				<0.06*
A395883	2024-07-31	48.50				<0.06*

^{*}Average of concentrations measured in the 1-hr and 6-hr/7-hr samples collected during pumping tests.

Analytical results obtained during the pumping tests completed in 2023 showed the presence of nitrate in the intermediate aquifer (10 - 12 mbg). Assuming deeper aquifers would be less exposed to potential nitrate contamination from surface, Wills recommended installing deeper wells on the Subject Property to evaluate groundwater quality and availability at greater depths.

Based on the results obtained in September 2024, the deeper aquifers in which wells A395881, A395882 and A395883 were installed appear unaffected by nitrate. The subsurface soil stratigraphy encountered during the installation of these wells is described in the MECP well records prepared by HLWD and included in **Appendix F**. All three well records mention the presence of an approximately 10 m thick layer of relatively compact clayey material from approximately 12 to 22 mbg. The presence of this layer could mitigate the vertical migration of nitrate and explain the low nitrate concentrations in wells A395881, A395882 and A395883.

Additional sampling events of the surficial aquifer and intermediate aquifer are included in Wills' proposed Monitoring Program described in **Section 7.0**.

6.0 Groundwater Impact Assessment

This section summarizes the result of the latest Groundwater Impact Assessment completed by Wills for the Subject Property in August 2024 and considering 38 individual residential lots for the Proposed Development.

Wills' Groundwater Impact Assessment was conducted on the basis of the Guideline D-5-4 to determine the feasibility and potential for impacts to down-gradient water resources arising from the proposed sewage disposal systems.

Available post-development dilution/recharge water for the Subject Property was estimated through a water balance analysis. A summary of the water balance calculations, including the Groundwater Impact Assessment, is included in **Appendix I**. The water balance analysis considered the following elements:

- Historical Climate Normals Oshawa WPCP (Climate ID 6155878).
- The total monthly water surplus available for dilution was calculated accounting for evapotranspiration using the Thornthwaite method.
- Infiltration factors for topography, soils, and cover were applied based on the MOEE document, Hydrogeological Technical Information Requirements For Land Development Applications, April 1995.
- The additional groundwater recharge that will occur from the low impact development (LID) features within the proposed development.

The mass balance equation used in Wills' Groundwater Impact Assessment is included in **Appendix J**.

6.1 Water Balance Analysis

In order to determine the average annual infiltration volume that will be available for dilution as part of the proposed development, a water balance analysis has been completed in accordance with the Conservation Authority Guidelines for Hydrological Assessments. The site was divided into catchments for existing and proposed conditions using the same impervious assumptions employed for the stormwater management design, completed by D.G. Biddle & Associates Limited. In the proposed condition, to account for actual drainage area contributing to each proposed LID feature, some catchments were further subdivided. The existing and proposed catchments for the water balance analysis are provided in **Appendix I**.

Without accounting for the additional groundwater recharge that occurs as a result of the proposed LID features, the development would significantly reduce the volume of available water for dilution. However, as the LID features have been designed to retain stormwater runoff, the added infiltration potential should be calculated.

The average annual infiltration volume provided by each LID feature was calculated by completing a daily water balance analysis using precipitation and temperature data for the Oshawa Water Pollution Control Plan from 1981 to 2006 (26 years). This date range was selected because it contains the most recent data available for the gauge station and did not have a significant quantity of missing data. A summary of the water balance analysis results is shown in **Table 27** and detailed water balance calculations are provided in **Appendix I**.

Table 27– Water Balance Summary

Catchment Parameters	Existing	Proposed Without LID	Change Without LID	Proposed with LID	Change With LID
Precipitation (mm/year)			872		
Precipitation (m³/year)	215,471	215,471	0.0%	215,471	0.0%
Evapotranspiration (m³/year)	150,056	145,692	-2.9%	145,692	-2.9%
Infiltration (m³/year)	52,561	49,027	-6.7%	57,538	9.5%
Runoff (m³/year)	12,854	21,575	67.8%	13,064	1.6%

Notes: 1. No infiltration has been calculated for LID features during months with a negative average temperature.

A review of **Table 27** shows that the average annual infiltration volume for the proposed condition will increase from the existing condition when accounting for the additional infiltration provided by the LID features.

6.2 Predictive Assessment

The results from the Predictive Assessment are outlined below:

Table 28 – Predictive Assessment of Nitrate Concentration

Parameter	Value
Number of Lots	38
Volume of Effluent (Qe)	38 lots x 1,000 L/day = 38,000 L/day
Effluent nitrate concentration	40 mg/L
Nitrate loading - Development	1,520,000 mg/day
Background Nitrate	2.86 mg/L
Nitrate loading - Rainfall	384,157 mg/day
Stormwater Effluent Nitrate	0 mg/L
Nitrate loading – Run-off	0 mg/day
Total Nitrate Loading	1,904,157 mg/day
Total Dilution Water Available	195,639 L/day
Total nitrate concentration at property boundary	9.73 mg/L

In view of the results presented in **Table 28**, Wills concludes that the current configuration of the Proposed Development would result in acceptable levels of nitrate at the property boundary.

7.0 Conclusions and Recommendations

The following conclusions and recommendations are provided with respect to Wills' Study.

- Shallow subsurface soils were generally consistent across the Subject Property and included a thin layer of silty sand topsoil underlain by sand with slight variations in gravel, silt, and clay content. A north-south trending band of silt and clay rich soils was observed on the western side of the Subject Property at TP22-10, TP22-08, and TP22-11 at a depth of approximately 1.3 to 1.7 mbg and extended to the test pit termination depths of approximately 3.0 mbg.
- Five drivepoint monitor wells were installed in the base of select test pits to monitor groundwater levels above a depth of 3 mbg. Static water levels were also monitored in 3 monitor wells installed by Cambium to support their geotechnical investigation.
- Static groundwater levels were generally consistent across the Subject Property and ranged from:
 - 2.34 mbg to 2.71 mbg on September 27/October 5, 2022
 - o 2.83 mbg to 2.99 mbg on December 5, 2023
 - 2.48 mbg to 2.66 mbg on September 27, 2024
- Groundwater seepage was encountered in all test pits at an approximate depth of 2.9 mbg to 3 mbg, with the exception of TP22-06, TP22-07, and TP22-10, which were found to be dry prior to backfilling.
- Eight in-situ infiltration tests were conducted between September 26 and September 27, 2022. T-Times were calculated to range from 0 min/cm to 0.81 min/cm, with an average of 0.46 min/cm across all eight tests.
- A review of the physical soil characteristics and comparison against OBC Table 2 and Table 3 suggests a percolation time (T-Time) that is generally between 2 to 12 min/cm for the shallow sand to silty sand soils, and > 50 min/cm for the clayey silt to silt material. Laboratory percolation estimates suggest the T-time ranges from 6 min/cm to 12 min/cm for the sand to silty sand material, and > 50 min/cm for the clayey silt to silt material.
- In view of the in-situ infiltration testing and physical soil testing results, Wills recommends using the middle of the T-time range for the individual soil units/soil envelopes (OBC Table 2 and Table 3) to be conservative. The individual shallow soil types and respective envelopes are shown on **Figure 3**. Within the clayey silt to silt and clay area identified in green in **Figure 3**, Wills recommends that raised tile beds be used for septic systems installed in this area and set-back distances adjusted accordingly.
- Any proposed LID and sewage disposal system design should consider the shallow groundwater depths encountered on the Subject Property, which may impact the respective designs in the areas investigated by Wills.

- Infiltration rates and percolation times may vary across the Subject Property, as topography, moisture content, soil gradation and relative compactness will affect in-situ infiltration rates.
- The Groundwater Impact Assessment considered 38 residential lots, and anticipated flows to the sewage disposal systems of 1,000 L/day with a nitrate loading of 40 mg/lot/day on the basis of *D-5-4*. The Groundwater Impact Assessment concludes that a groundwater nitrate concentration of 9.73 mg/L will be achieved at the property boundary, which meets the ODWQS and satisfies the requirements of *D-5-4*.
- The following is provided with respect to Wills' interpretation of the MECP Well Records and historic groundwater investigations on neighboring properties:
 - Viable water supply aquifers have been identified within both coarse grained sand and gravel layers, as well as within the underlying bedrock stratum.
 - The recommended pumping rates ranged from approximately 7.6 to 30.2 litres per minute (L/min) for the nearby overburden wells (19.9 L/min average), and from 3.8 to 37.8 L/min for the bedrock wells (20.2 L/min average).
 - Shallow aquifers were generally more high-producing north of the Subject Property, and deeper wells installed in overburden and bedrock south of the Subject Property were generally more high-performing.
 - Detailed hydraulic assessment (2018 Ted Rannie Report) completed for the property directly south of the Subject Property, concluded that the underlying aquifer could support a 20-lot residential development without causing off-site impacts to neighbouring water users or surface resources.
 - The results of the pumping tests and hydrogeological modelling completed by Wills suggest the following:
 - o Installing any number of the proposed 38 domestic wells either in the same aquifer as the wells installed in 2023 (approximately10-12 mbg), or in the same coarse gravel formation intercepted by well A395881 installed in 2024 (approximately 22-24 mbg) would meet the need of the proposed development without secondary storage systems. In this configuration, Wills does not anticipate significant interactions between pumping activities on the Subject Property nor with neighboring water user. It is noted that the coarse gravel formation intercepted by well A395881 is not present and/or suitable for water supply (quantity wise) everywhere on the Subject Property.
 - Safe yields for the two O. Reg. 903 Water Supply Wells installed in bedrock on the Subject Property were estimated to be 11.36 L/min (3 GPM) or lower. This implies that residential lots equipped with a well installed in bedrock may require secondary storage to meet water demand at peak hour. Bedrock wells can be significantly variable in yield depending on

whether or not the well has intercepted a network of water bearing fractures.

- Although the results of groundwater modelling suggest that the configuration where all proposed 38 wells are installed in bedrock and pumped at a reduced rate of 11.36 L/min (Scenario 1.2) is feasible, the level of interactions between pumping activities on the Subject Property is significant. Where possible, shallower water bearing formations with acceptable water quality should be the preferred option to install future water supply wells on the Subject Property.
- The lateral extent of the water-bearing coarse gravel formation intercepted by well A395881 is unknown. Results obtained during Wills' investigations, including the review of available information about wells TW1, TW2 and TW3 installed on the property to the south, suggest that:
 - This formation is present and its water bearing capacity is suitable for drinking water supply on the portion of the Subject Property located south of well A395881.
 - This formation is either not present or its water bearing capacity is insufficient elsewhere on the Subject Property.
- Assumptions above with respect to the lateral extension of the water-bearing coarse gravel formation can only be verified through exploratory drilling.
- Nitrate concentrations ranging from 0.09 to 6.21 mg/L were measured in October 2023 in the three O. Reg. 903 Water Supply Wells installed in 2023 at depths ranging from approximately 10 to 12 mbg (A377795, A377796 and A377799). In September 2024, nitrate concentrations measured in these wells ranged from 0.09 to 1.82 mg/L. It is noted that nitrate concentrations for all tested samples collected from wells A377795, A377796 and A377799 met the ODWQS.
- Nitrate was not detected in any of the three O. Reg. 903 Water Supply Wells installed in 2024 on the Subject Property (A395881, A395882, and A395883). These results suggest that nitrate does not migrate vertically to the deeper aquifers identified on the Subject Property at depths of approximately 22-24 mbg (Deep Overburden Aquifer) and 47-49 mbg (Bedrock Aquifer).
- Nitrate concentrations measured in September 2024 in the monitor wells installed by Cambium in 2022 and the three O. Reg. 903 Water Supply Wells installed in 2023 showed little variability when compared to the concentrations measured in October and December 2023, except for the following:
 - o The concentration measured in well BH110-22, installed at approximately 6 mbg in the southeast portion of the Subject Property, which increased from 2.72 mg/L in December 2023 to 4.81 mg/L in September 2024.

- The concentration measured in well A377795, installed at 11.19 mbg in the central portion of the Subject Property, which decreased from 5.69 mg/L (average of 5.16 and 6.21 mg/L) in October 2023 to 1.18 mg/L in September 2024.
- Water treatment systems for the Proposed Development should consider the exceedances noted in **Section 5.6**.

Based on the above and satisfy the outstanding peer review comments, Wills recommends that a Monitoring Program be implemented on the Subject Property, to include:

- Prior to proposed development construction:
 - o Install seven monitor wells on the Subject Property, to a depth of 6 mbg, including five wells along the downgradient limit of the Subject Property and two wells along the upgradient limit to the north and west. Proposed locations for these seven monitor wells are shown on Figure 8.
 - Record static groundwater levels in all seven monitor wells on a bi-annual basis, during the spring and summer.
 - Collect groundwater samples in the seven newly installed monitor wells and the three existing O. Reg. 903 Water Supply Wells A377795, A377796 and A377799, twice a year during spring and summer, for analysis of the following parameters on all samples: Nitrite, Nitrate, Organic Nitrogen, Total Coliform and E. Coli.
 - o Preparation of technical memo summarizing the pre-development results on an annual basis.
- During construction of the proposed development and after, as required:
 - Collect groundwater samples in the seven newly installed monitor wells and the three existing O. Reg. 903 Water Supply Wells A377795, A377796 and A377799, twice a year during spring and summer, for a period of three years. This timeframe may be extended pending the duration of construction and results obtained. This includes the recording of groundwater static levels in all wells.
 - Following each sampling event, submit all ten groundwater samples to an accredited laboratory of for analysis of the following parameters: Nitrite, Nitrate, Organic Nitrogen, Total Coliform and E. coli.
 - Prepare technical memos summarizing the results obtained during the groundwater monitoring activities, on an annual basis. These memos should include an analysis of the evolution of groundwater quality and appropriate recommendations with respect to the renewal of the 3-year monitoring period and any mitigation measures required.

Should the construction of the proposed development commence in the spring of 2025, Wills recommends that:

- The new monitor wells be installed during late winter or early spring of 2025.
- Pre-development groundwater levels be recorded, and groundwater samples collected and analysed during spring and summer 2025.

We trust that the information contained in and attached to this report meets your needs at this time. The following Statement of Limitations should be read carefully and is an integral part of this report. Do not hesitate to contact the undersigned if you have any questions or concerns.

Respectfully submitted,

Prepared by:

Ralf Bolvin, P. Eng., QPESA

Project Engineer

Reviewed by:

Ian Ames, M.Sc., P.Geo.

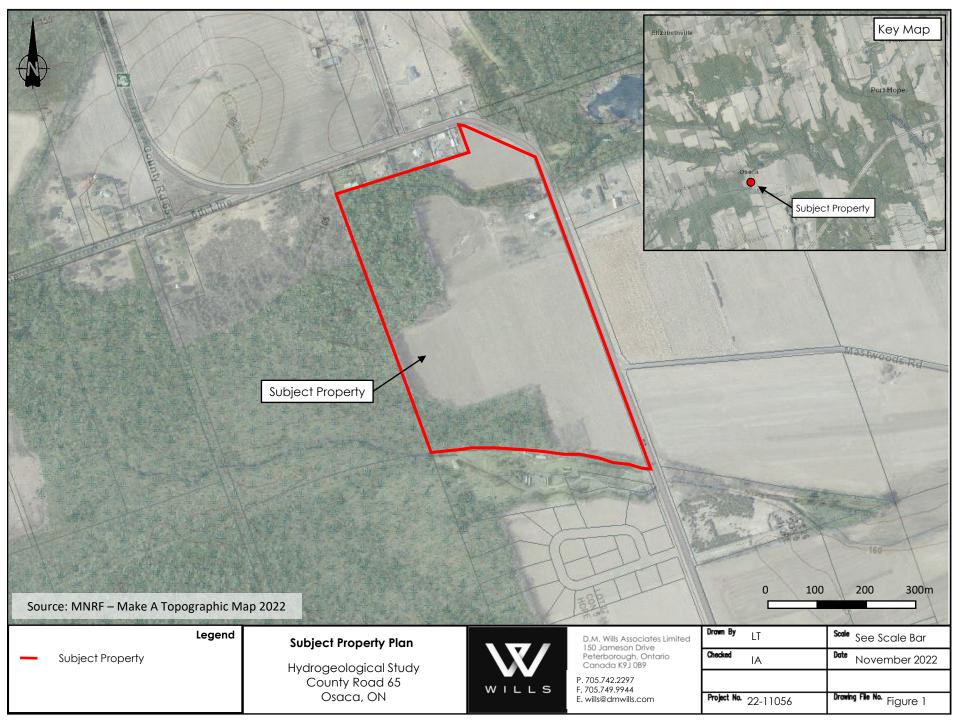
Environmental Monitoring and

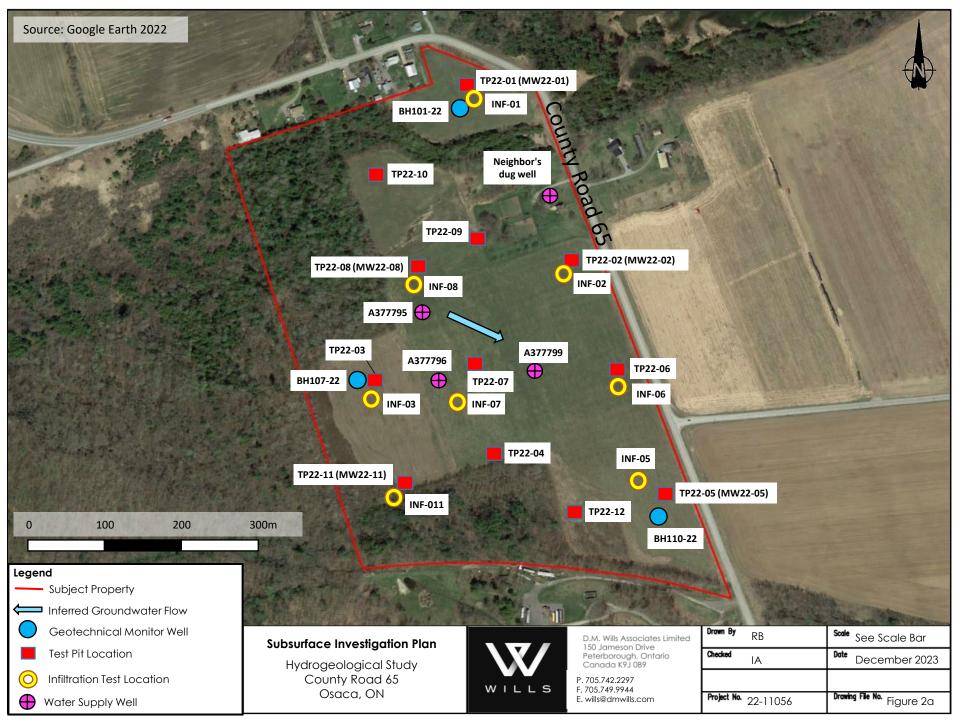
Management Lead

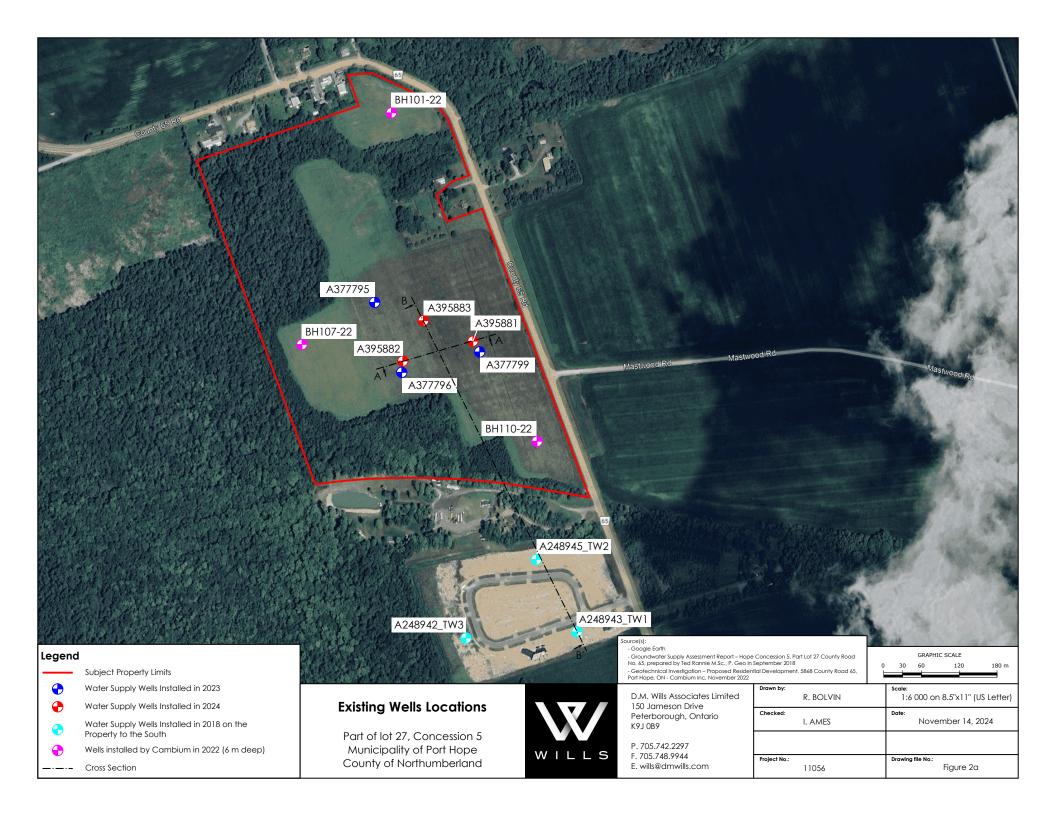
RB/IA/jh

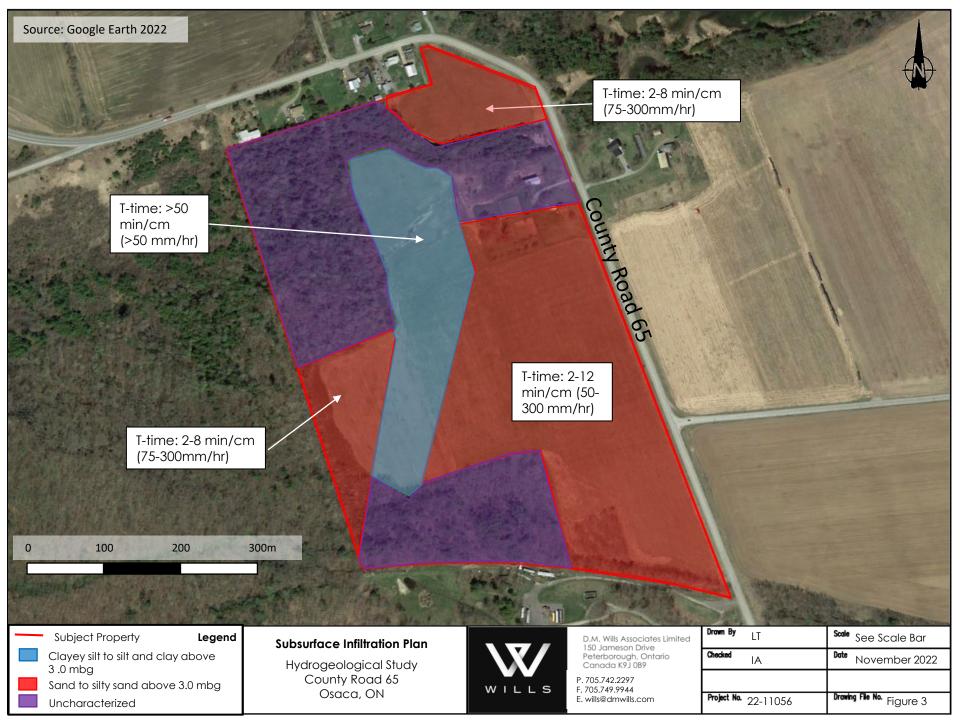
Statement of Limitations

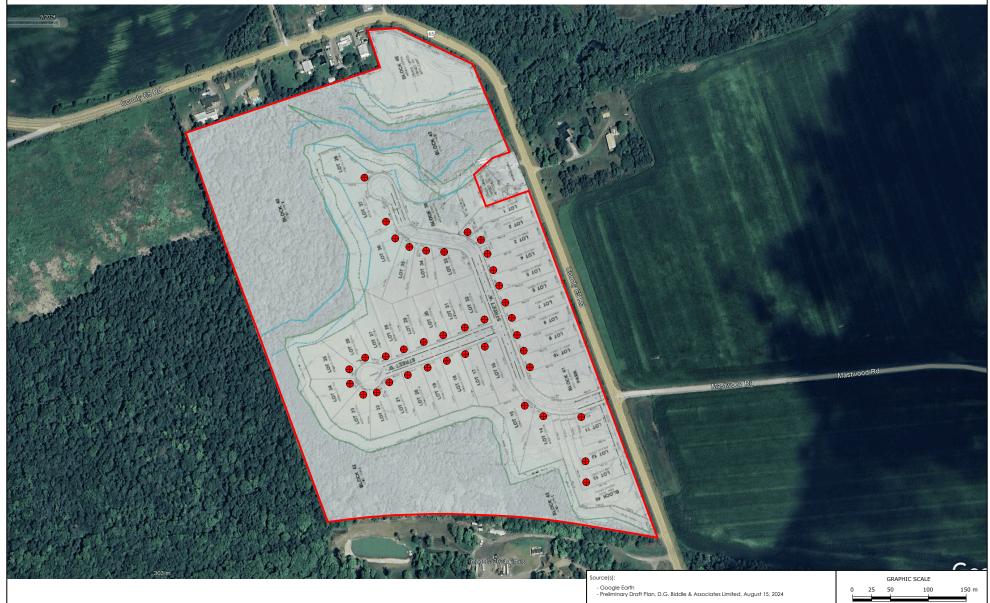
This report is intended solely for Hillstreet Developments Ltd. c/o Larry MacDonell (Client) for the Proposed Development located on Pt Lot 27Concession 5, in the village of Osaca, Ontario, and is prohibited for use by others without D.M. Wills Associates Limited's (Wills) prior written consent. This report is considered Wills' professional work product and shall remain the sole property of Wills. Any unauthorized reuse, redistribution of or reliance on this report shall be at the Client and recipient's sole risk, without liability to Wills. The Client shall defend, indemnify and hold Wills harmless from any liability arising from or related to the Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include supporting drawings and appendices.


The recommendations made in this report are based on Wills' present understanding of the Project, the current and proposed site use, ground and subsurface conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with the level of care and skill ordinarily exercised by members of geoscience or engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the sole responsibility of such third parties.


The recommendations and comments made in this report are based on Wills' investigations and resulting understanding of the Project, as defined at the time of the assignment. Wills should be retained to review our recommendations when the final or any modified design drawings and specifications are complete. Without this review, Wills shall not be liable for any misunderstanding of our recommendations or their application and adaptation.


Soil, bedrock, and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations. Should any conditions at the Subject Property be encountered which differ from those found at the test locations, Wills must be notified immediately in order to permit a reassessment of our recommendations. If different conditions are identified, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by Wills is completed.

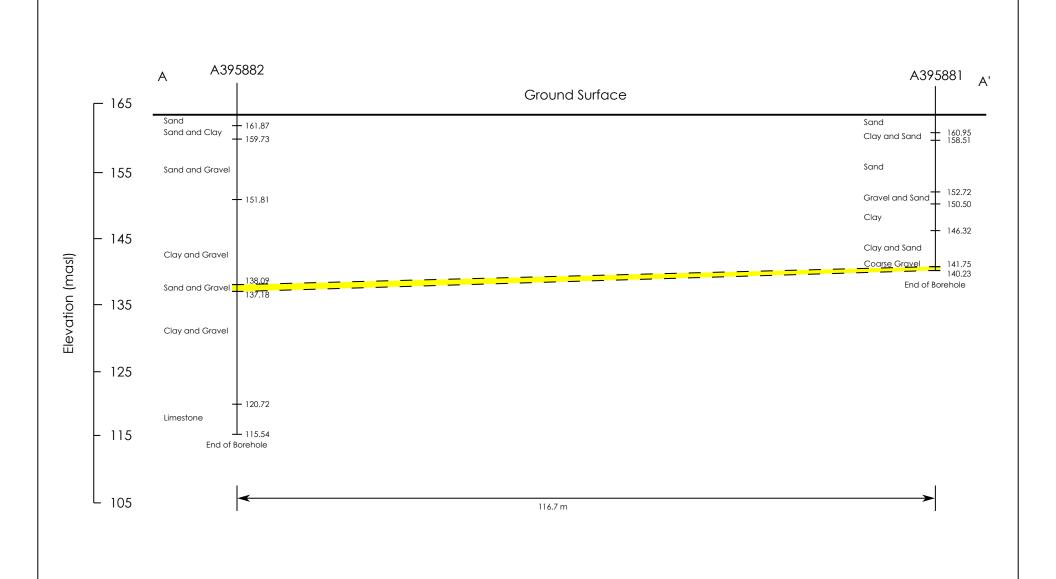

FIGURES



Legend

Subject Property Limits

Domestic Water Supply Wells (38 Wells)


Hydrogeological Modelling Domestic Wells Locations

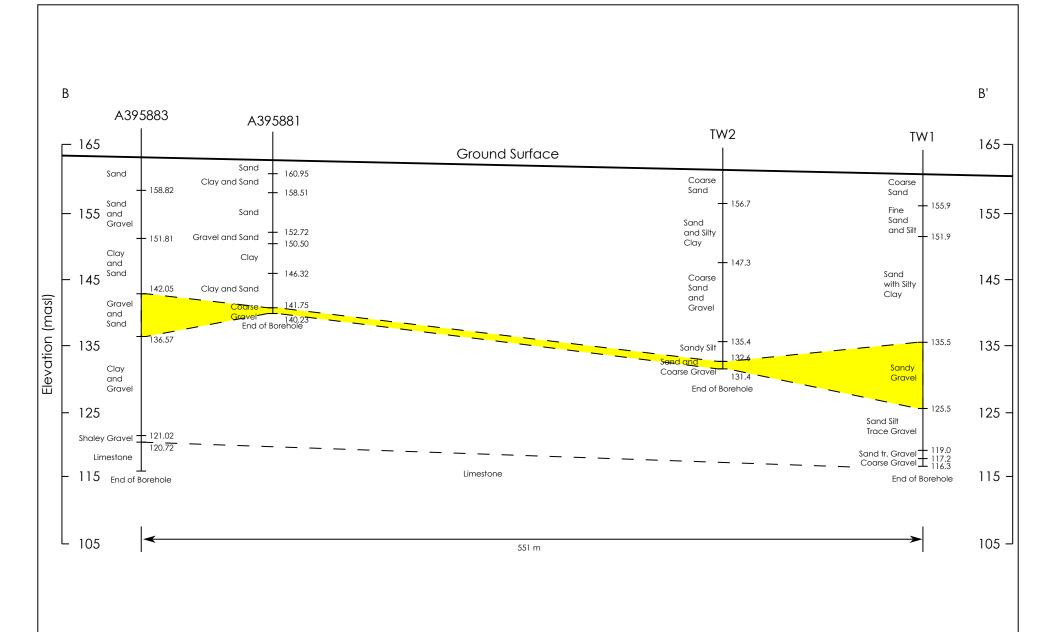
Part of lot 27, Concession 5 Municipality of Port Hope County of Northumberland

D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario K9J 0B9

Drawn by: R. BOLVIN	Scale: 1:5 000 on 8.5"x11" (US Letter)
Checked: I. AMES	November 13, 2024
Project No.: 11056	Drawing file No.: Figure 4

Legend

Gravel Formation

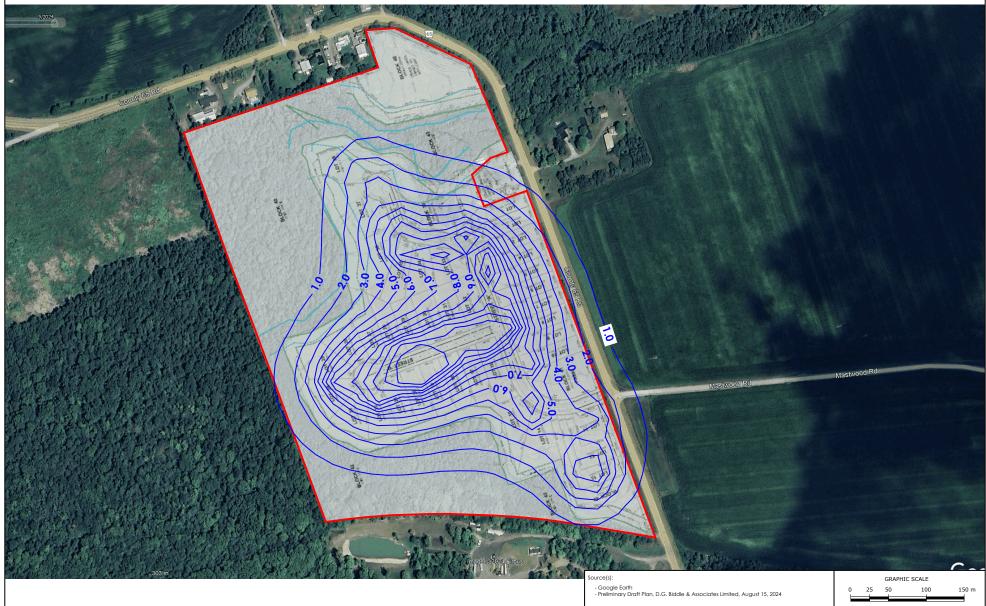

Cross Section A-A'

Part of lot 27, Concession 5 Municipality of Port Hope County of Northumberland

D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario K9J 0B9

Drawn by: R. BOLVIN	See graphic scale
Checked: I. AMES	November 14, 2024
Project No.: 11056	Drawing file No.: Figure 5

Gravel Formation


Cross Section B-B'

Part of lot 27, Concession 5 Municipality of Port Hope County of Northumberland

D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario K9J 0B9

Drawn by: R. BOLVIN	See graphic scale
Checked: I. AMES	November 14, 2024
Project No.: 11056	Drawing file No.: Figure 6

Legend

Subject Property Limits

•

Domestic Water Supply Wells (38 Wells)

-1.0- Simulated Drawdown (meters)

Hydrogeological Modelling Simulated Drawdown - Scenario 1.2

Part of lot 27, Concession 5 Municipality of Port Hope County of Northumberland

D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario K9J 0B9

Drawn by: R. BOLVIN	Scale: 1:5 000 on 8.5"x11" (US Letter)
Checked: I. AMES	November 14, 2024
Project No.: 11056	Drawing file No.: Figure 7

Legend

Subject Property Limits

(

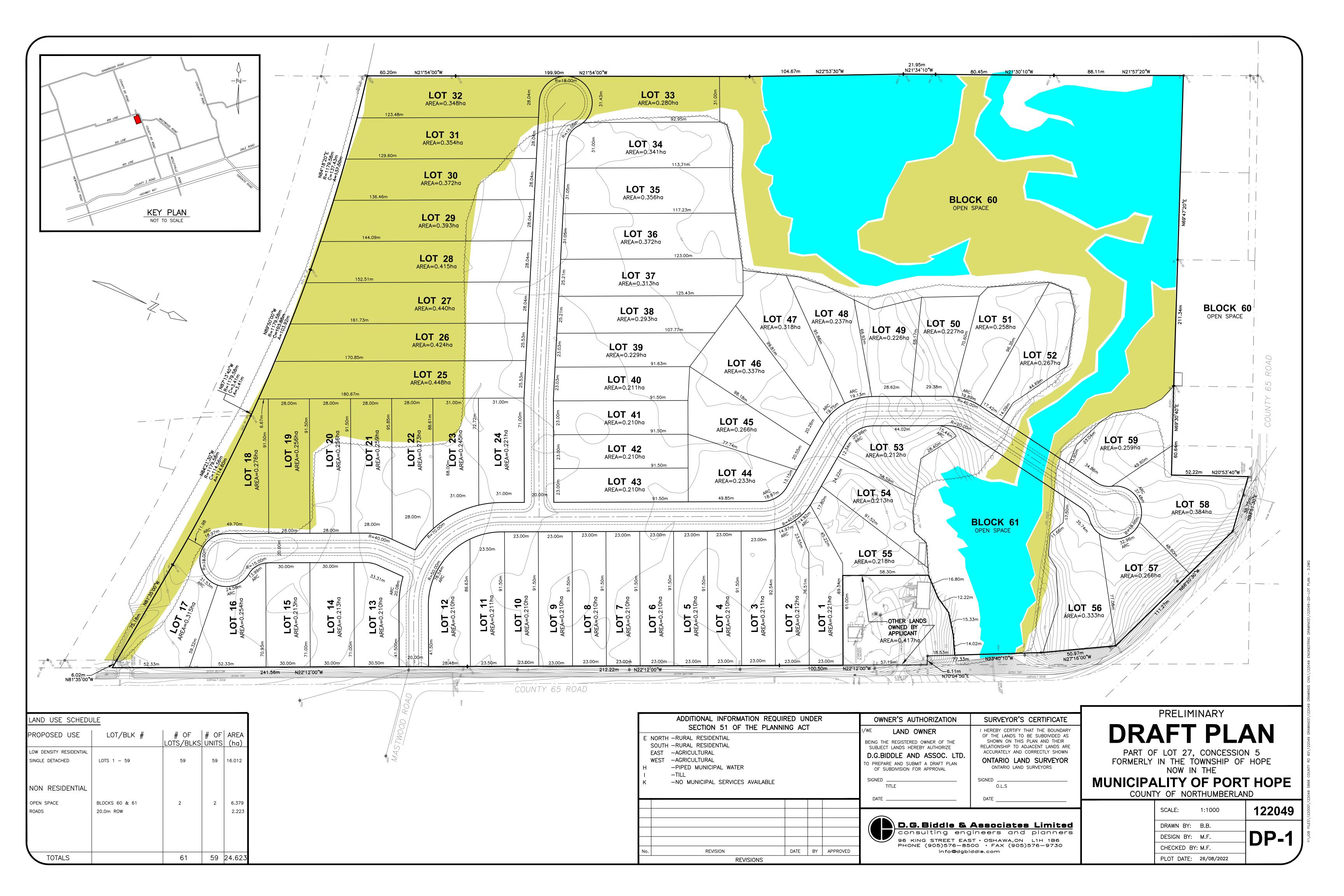
Water Supply Wells Installed in 2023

Proposed New Wells (6 m deep)

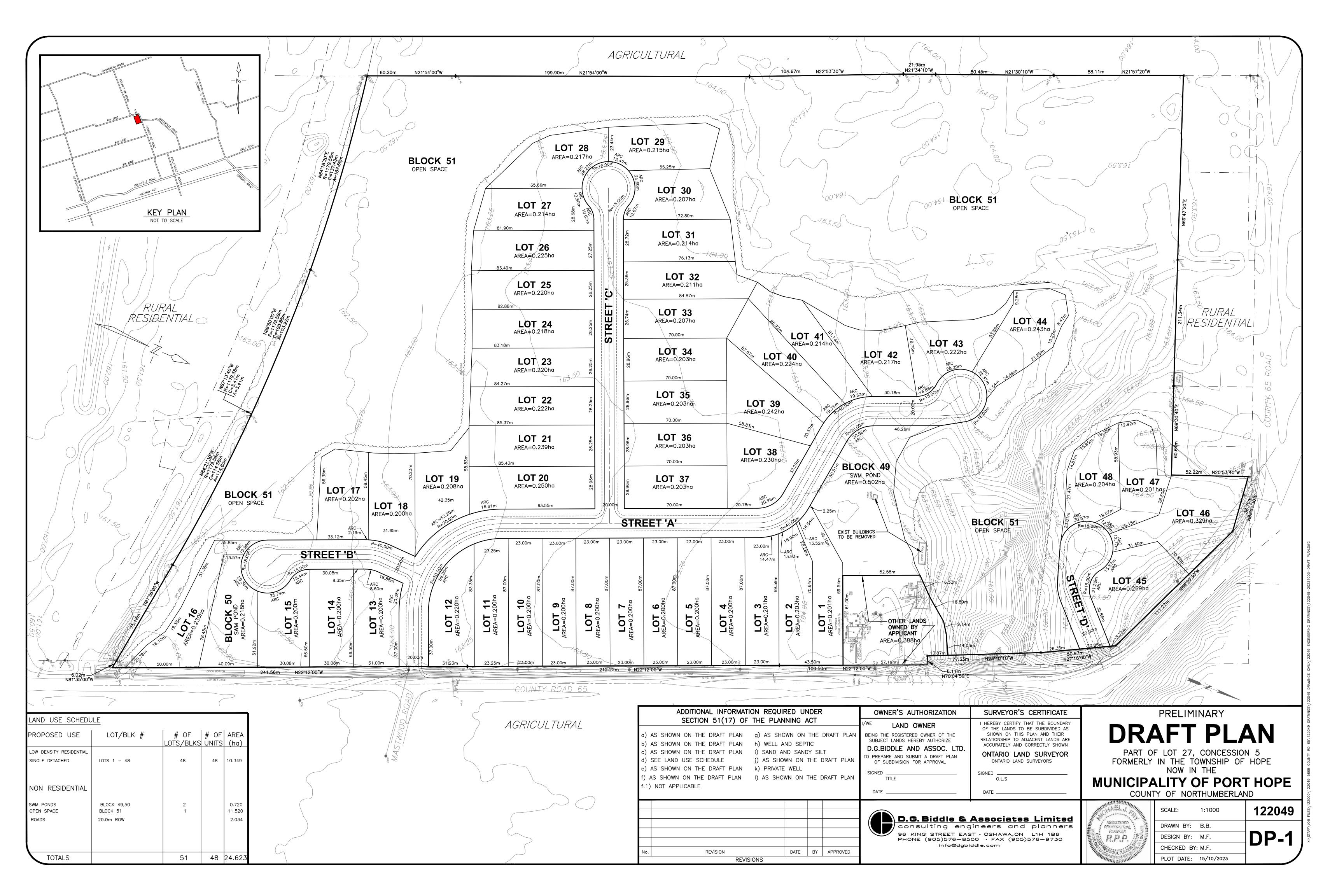
Groundwater Monitoring Program Proposed Monitor wells

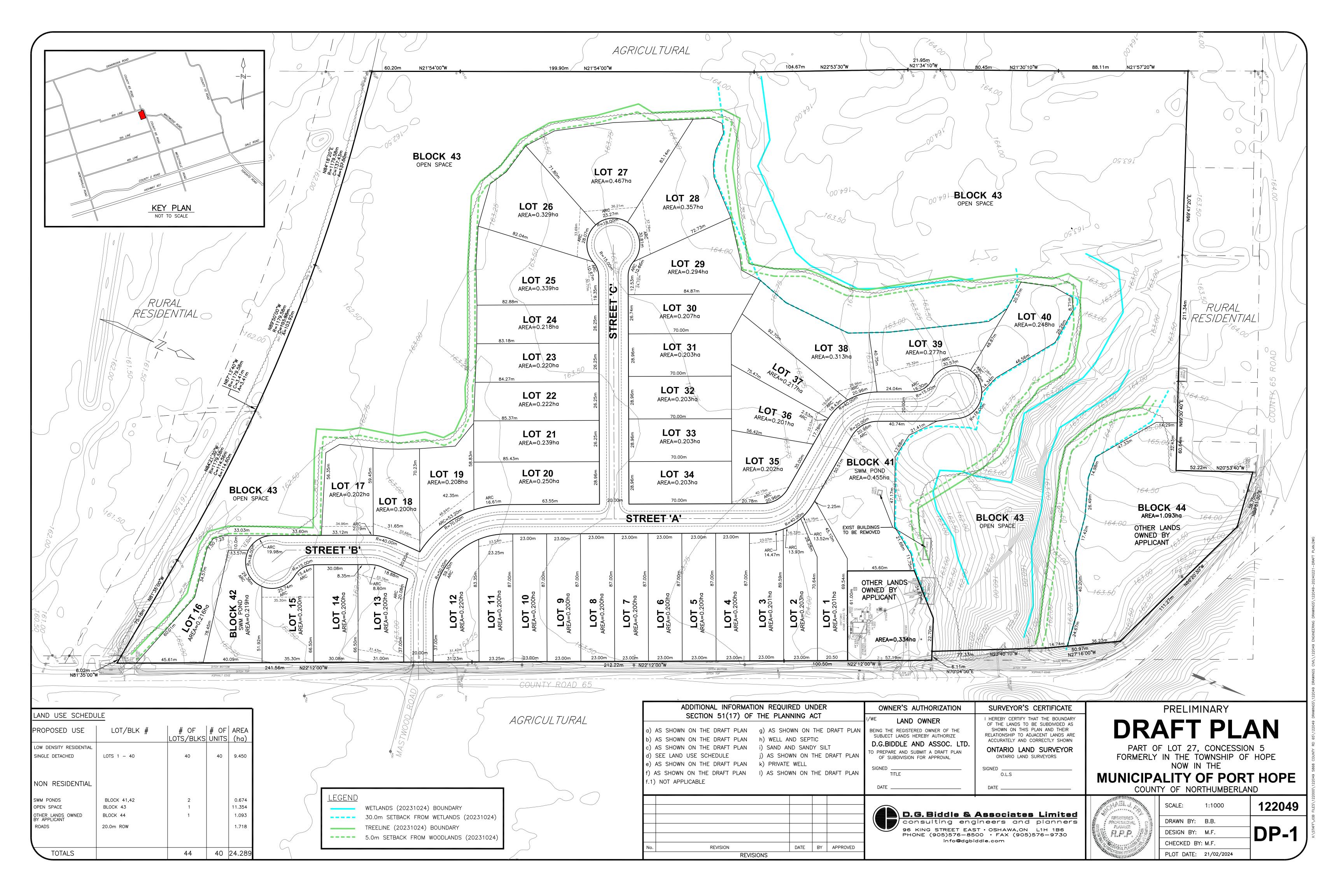
Part of lot 27, Concession 5 Municipality of Port Hope County of Northumberland

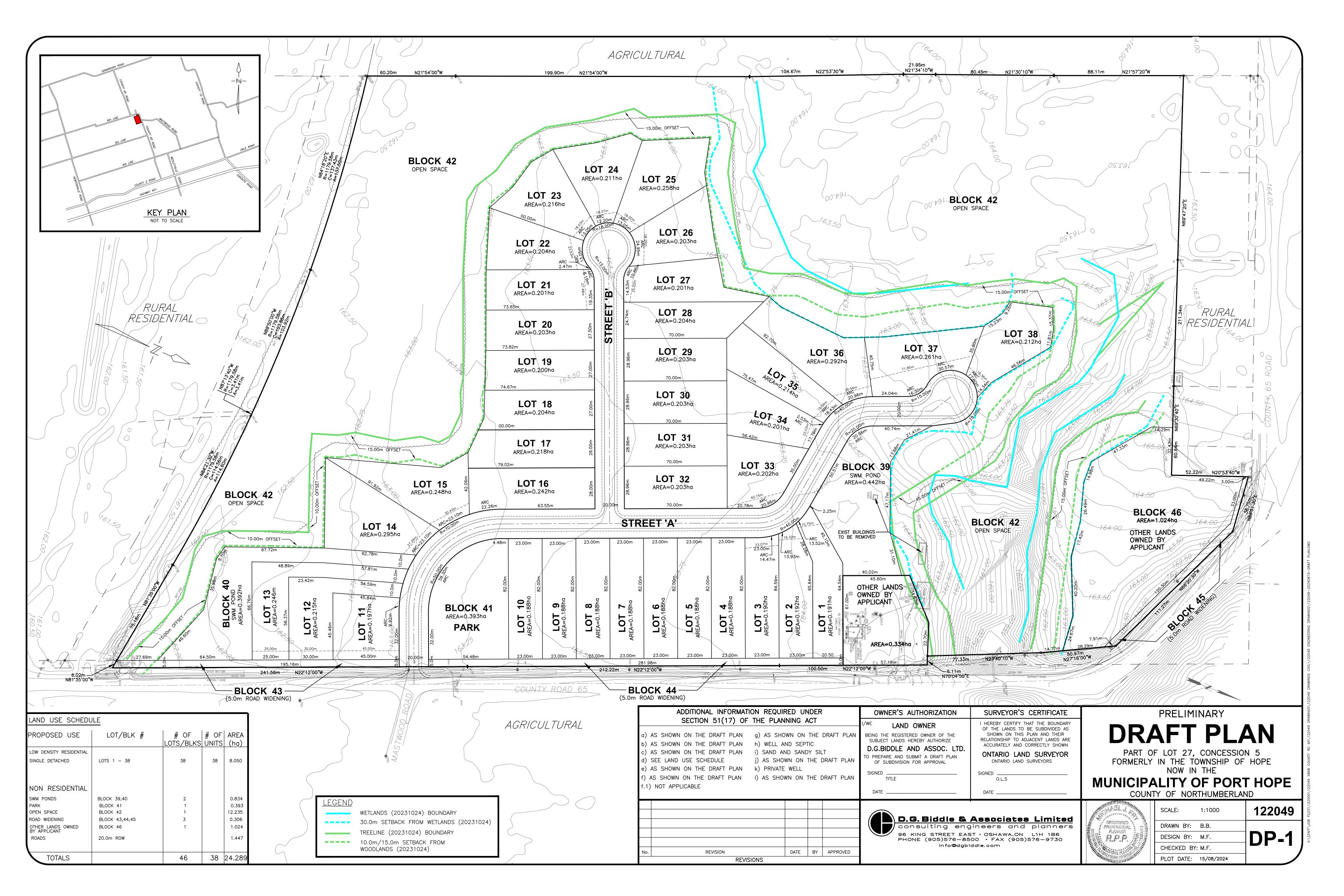
D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario K9J 0B9


Drawn by: R. BOLVIN	Scale: 1:5 000 on 8.5"x11" (US Letter)
Checked: I. AMES	November 14, 2024
Project No.: 11056	Drawing file No.: Figure 8

Site Plans - D.G. Biddle & Associates Limited


Preliminary Draft Plan – D.G. Biddle & Associates Limited – August 26, 2022


Preliminary Draft Plan – D.G. Biddle & Associates Limited – October 15, 2023


Preliminary Draft Plan – D.G. Biddle & Associates Limited – February 21, 2024

Preliminary Draft Plan – D.G. Biddle & Associates Limited – August 15, 2024

Appendix B

Test Pit Logs

Test Pit Log - TP22-01

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, moist.	
0.2 – 3.0	Brown to grey sand, trace gravel, trace silt, moist to saturated.	
Grab Sample Summary		
GS-01 collected at approximately 1.4 mbg.	GS-01 GSA: 3% Gravel 93% Sand 3% Silt 1% clay	

Groundwater

• Groundwater encountered at 3.0 mbg.

Additional Notes

- Test pit terminated at 3.0 mbg.
- Water pooling at the bottom of test pit upon completion.
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.
- MW22-01 installed in test pit prior to backfilling.

Test Pit Photos

TP22-01 September 26, 2022 17T 705479 mE 4875999 mN

Test Pit Log – TP22-02

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, rootlets, moist.	
0.2 – 3.0	Brown sand, trace gravel, trace silt, moist.	
Grab Sample Summary		
GS-02 collected at approximately 2.9 mbg.	<u>GS-02 GSA:</u> 3% Gravel 94% Sand 3% Silt 0% Clay	

Groundwater

• No groundwater encountered.

Additional Notes

- Test pit terminated at 3.0 mbg.
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.
- MW22-02 installed in test pit prior to backfilling.

Test Pit Photos

TP22-02 September 23, 2022 17T 705628 mE 4875766 mN

Test Pit Log – TP22-03

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, moist.	
0.2 – 3.0	Brown to grey sand, trace gravel, moist to saturated.	
Grab Sample Summary		
GS-01 collected at approximately 1.0 mbg.	<u>GS-01 GSA:</u> 0% Gravel 97% Sand 3% Silt 0% Clay	

Groundwater

• Groundwater encountered at 3.0 mbg.

Additional Notes

- Test pit terminated at 3.0 mbg.
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.

Test Pit Photos

TP22-03 September 23, 2022 17T 705389 mE 4875605 mN

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, moist.	
0.2 – 0.5	Brown sand, some silt, moist.	
0.5 - 3.0	Brown to grey sand, trace gravel, trace silt, moist to saturated.	
Cuanadoradas		

Groundwater

Groundwater encountered at 3.0 mbg.

Additional Notes

- Test pit terminated at 3.0 mbg.
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.

Test Pit Photos

TP22-04 September 23, 2022 17T 705528 mE 4875523 mN

Depth (mbg)	Soil Description		
0.0 – 0.2	Brown silty sand topsoil, rootlets, moist.		
0.2 - 2.4	Brown sand, some silt, trace gravel, trace clay, moist.		
2.4 – 3.0	Brown to grey sand, some silt, trace gravel, trace clay, moist to saturated.		
	Grab Sample Summary		
GS-01 collected at approximately 1.7 mbg.	<u>GS-01 GSA:</u> 2% Gravel 78% Sand 18% Silt 2% Clay		

Groundwater

Groundwater encountered at 2.9 mbg.

Additional Notes

- Test pit terminated at 3.0 mbg.
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.
- MW22-05 installed in test pit prior to backfilling.

Test Pit Photos

TP22-05 September 23, 2022 17T 705743 mE 4875493 mN

Depth (mbg) Soil Description	
0.0 – 0.2	Brown silty sand topsoil, some rootlets, moist.
0.2 – 3.0	Brown to grey sand, some silt, trace gravel, trace clay, moist.

Groundwater


No groundwater encountered.

Additional Notes

- Test pit terminated at 3.0 mbg.
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.

Test Pit Photos

TP22-06 September 23, 2022 17T 705682 mE 4875632 mN

Depth (mbg)	Soil Description
0.0 – 0.2	Brown silty sand topsoil, moist.
0.2 - 3.0 Brown to grey sand, some silt, moist to wet.	
Groundwater	

• Groundwater not encountered.

Additional Notes

- Test pit terminated at 3.0 mbg.
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.

Test Pit Photos

TP22-07 September 23, 2022 17T 705514 mE 4875641 mN

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, moist.	
0.2 – 1.3	Brown to grey sand, some silt, trace clay, moist.	
1.3 – 3.0	Brown to grey silt and clay, trace sand, about plastic limit to much wetter than plastic limit.	
Grab Sample Summary		
GS-02 collected at approximately	<u>GS-02 GSA:</u> 0% Gravel 4% Sand	
2.0 mbg.	56% Silt 40% Clay	

Groundwater

• Groundwater encountered at 3.0 mbg.

Additional Notes

- Test pit terminated at 3.0 mbg.
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.
- MW22-08 installed in test pit prior to backfilling.

Test Pit Photos

TP22-08 September 23, 2022 17T 705426 mE 4875745 mN

Depth (mbg) Soil Description	
0.0 – 0.2	Brown silty sand topsoil, rootlets, moist.
0.2 - 2.4	Brown sand, trace silt, trace gravel, moist.
2.4 – 3.0	Brown to grey silty sand, some clay, moist to saturated.

Groundwater

Groundwater encountered at 3.0 mbg.

Additional Notes

- Test pit terminated at 3.0 mbg
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.

Test Pit Photos

TP22-09 September 23, 2022 17T 705509 mE 4875797 mN

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, moist.	
0.2 - 1.7	Brown silty sand, trace clay, moist	
1.7 – 3.0	Brown to grey silt and clay, trace sand, about plastic limit.	
Grab Sample Summary		
GS-02 collected at approximately 1.9 mbg.	<u>GS-02 GSA:</u> 0% Gravel 3% Sand 62% Silt 35% Clay	

Groundwater

• Groundwater not encountered.

Additional Notes

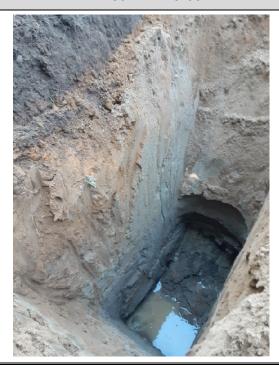
- Test pit terminated at 3.0 mbg
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.

Test Pit Photos

TP22-10 September 23, 2022 17T 705372 mE 4875876 mN

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, moist.	
0.2 - 1.7	Brown silty sand, trace clay, moist.	
1.7 – 3.0	Brown to grey silt and clay, trace sand, about plastic limit.	
Grab Sample Summary		
GS-03 collected at approximately 2.7 mbg.	GS-03 GSA: 0% Gravel 4% Sand 71% Silt 25% Clay	

Groundwater


• Groundwater encountered at 3.0 mbg.

Additional Notes

- Test pit terminated at 3.0 mbg
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.
- MW22-11 installed in test pit prior to backfilling.

Test Pit Photos

TP22-11 September 23, 2022 17T 705435 mE 4875489 mN

Depth (mbg)	Soil Description	
0.0 – 0.1	Brown silty sand topsoil, moist.	
0.1 - 0.8	Brown sand, some silt, moist.	
0.8 – 2.6	Brown to grey sand, trace silt, trace gravel, moist to wet.	
2.6 – 2.8	Grey sand, some gravel, trace silt, saturated.	

Groundwater

• Groundwater encountered at 2.6 mbg.

Additional Notes

- Test pit terminated at 2.8 mbg.
- Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling.

Test Pit Photos

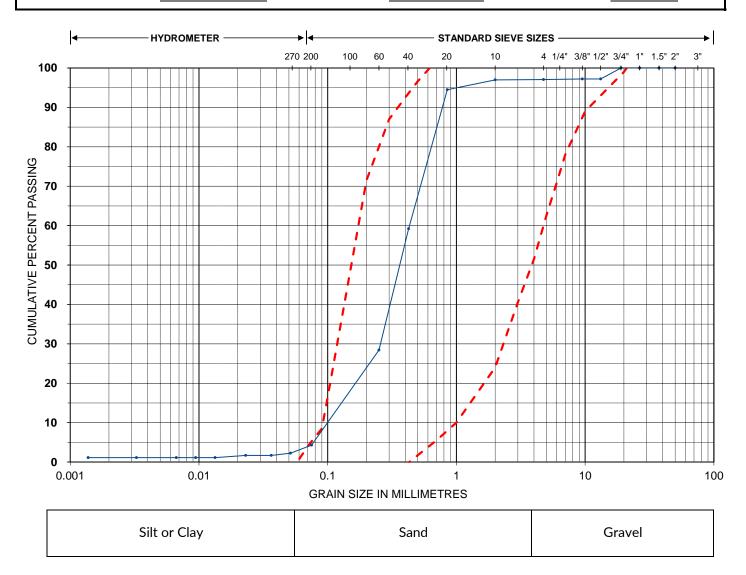
TP22-12 September 23, 2022 17T 705636 mE 4875461 mN

Appendix C

Certificates of Analysis – Physical Soil Testing

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9

(705) 702-3921


 ${\buildrel oxed{\boxtimes}}$ info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

 Project Name:
 Osaca (11056)
 Project No.:
 22-154
 Sample Date:
 26-Sep-22

Borehole/Test Pit ID.: TP22-01 Sample No./Depth: GS1 LAB ID: 22HYD-224

sp envelope T = 2 - 8 min/cm

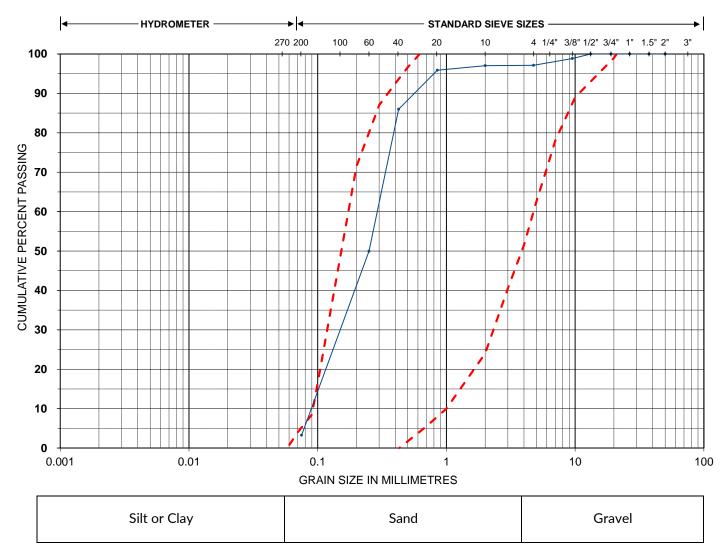
Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	97.2
9.5	97.2
4.750	97.1
2.000	97.0
0.850	94.5
0.425	59.2
0.250	28.4
0.075	4.3

Estimated T = 6 min/cm

Hydrometer (mm)	% Passing
0.051	2.2
0.036	1.7
0.023	1.7
0.013	1.1
0.009	1.1
0.007	1.1
0.003	1.1
0.001	1.1

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9

(705) 702-3921


 ${\buildrel oxed{\boxtimes}}$ info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

 Project Name:
 Osaca (11056)
 Project No.:
 22-154
 Sample Date:
 23-Sep-22

Borehole/Test Pit ID.: TP22-02 Sample No./Depth: GS2 LAB ID: 22HYD-225

sp envelope T = 2 - 8 min/cm

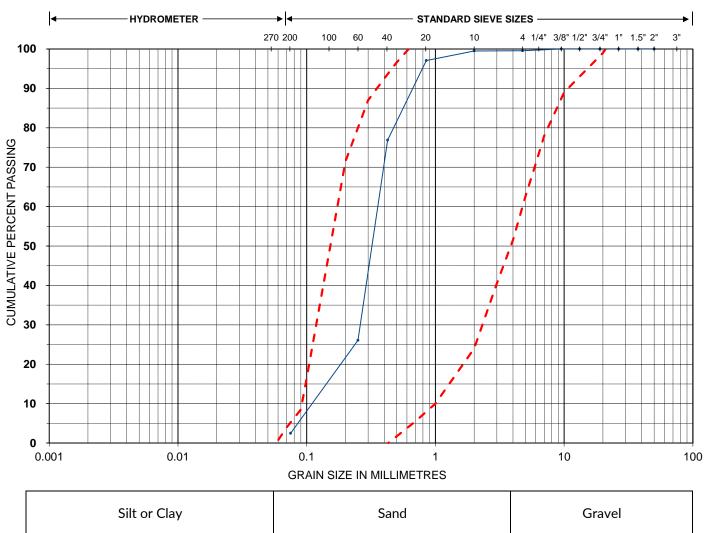
Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	98.8
4.750	97.1
2.000	97.0
0.850	95.9
0.425	86.0
0.250	49.9
0.075	3.2

Estimated T = 7 min/cm

Hydrometer (mm)	% Passing
0.052	0.0
0.036	0.0
0.023	0.0
0.013	0.0
0.009	0.0
0.007	0.0
0.003	0.0
0.001	0.0

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9

(705) 702-3921


☑ info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project No.: 22-154 Project Name: Osaca (11056) Sample Date: 23-Sep-22

Borehole/Test Pit ID.: TP22-03 Sample No./Depth: GS1 **LAB ID: 22HYD-226**

Silt or Clay	Sand	Gravel
Sinc of Glay	Sana	Giavei

sp envelope T = 2 - 8 min/cm

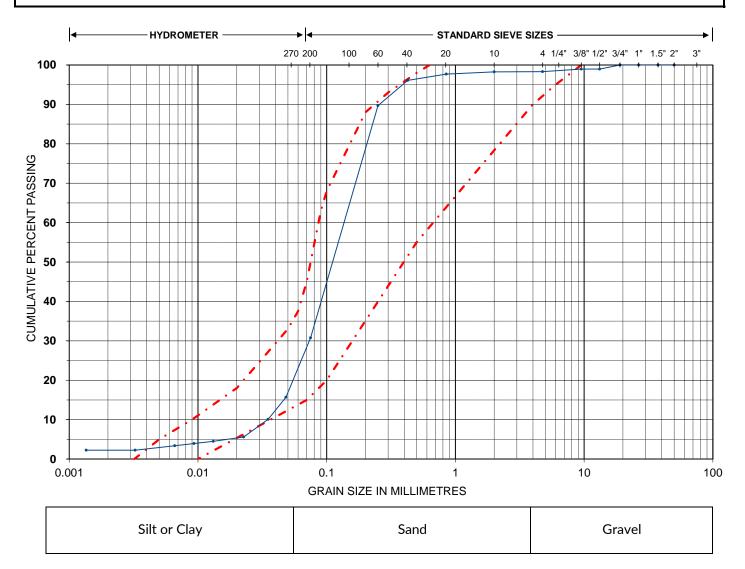
Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	99.6
2.000	99.5
0.850	97.1
0.425	76.9
0.250	26.1
0.075	2.5

Estimated T = 6 min/cm

Hydrometer (mm)	% Passing
0.052	0.0
0.037	0.0
0.023	0.0
0.013	0.0
0.009	0.0
0.007	0.0
0.003	0.0
0.001	0.0

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9

(705) 702-3921


 ${\buildrel oxed{\boxtimes}}$ info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056) Project No.: 22-154 Sample Date: 23-Sep-22

Borehole/Test Pit ID.: TP22-05 Sample No./Depth: GS1 LAB ID: 22HYD-227

- · - · - · - · - · - sm envelope T = 8 - 20 min/cm

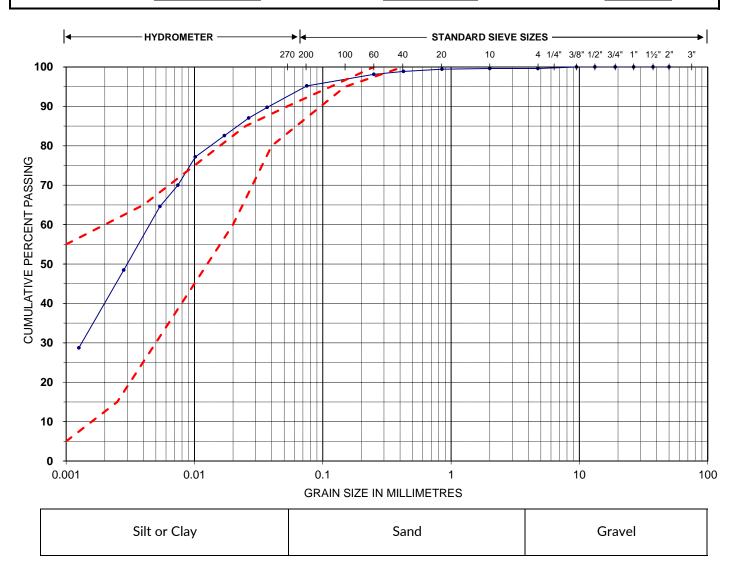
Estimated T = 12 min/cm

% Passing
100.0
100.0
100.0
99.0
99.0
98.3
98.3
97.7
96.1
89.7
30.8

Hydrometer (mm)	% Passing
0.048	15.7
0.035	10.1
0.023	5.6
0.013	4.5
0.009	3.9
0.007	3.4
0.003	2.2
0.001	2.2

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9

(705) 702-3921


☑ info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056) Project No.: 22-154 Sample Date: 23-Sep-22

 Borehole/Test Pit ID.:
 TP22-08
 Sample No./Depth:
 GS2
 LAB ID:
 22HYD-228

OH envelope T > 50 min/cm

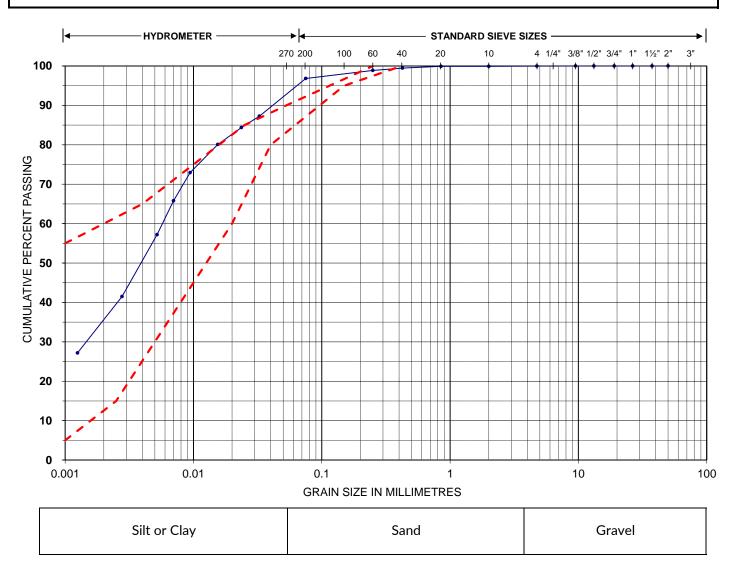
Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	99.6
2.000	99.6
0.850	99.4
0.425	98.9
0.250	98.1
0.075	95.2

Estimated T > 50 min/cm

Hydrometer (mm)	% Passing
0.037	89.7
0.026	87.0
0.017	82.6
0.010	77.2
0.007	70.0
0.005	64.6
0.003	48.5
0.001	28.7

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9

(705) 702-3921


☑ info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

 Project Name:
 Osaca (11056)
 Project No.:
 22-154
 Sample Date:
 23-Sep-22

 Borehole/Test Pit ID.:
 TP22-10
 Sample No./Depth:
 GS2
 LAB ID:
 22HYD-229

OH envelope T > 50 min/cm

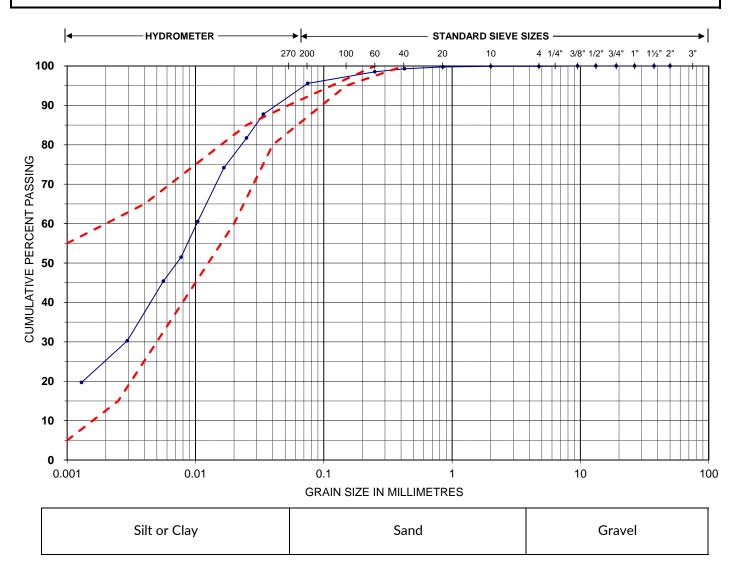
Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	100.0
2.000	99.9
0.850	99.9
0.425	99.5
0.250	98.9
0.075	96.8

Estimated T > 50 min/cm

Hydrometer (mm)	% Passing
0.033	87.2
0.024	84.4
0.015	80.1
0.009	72.9
0.007	65.8
0.005	57.2
0.003	41.5
0.001	27.2

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9

(705) 702-3921


 $oxed{oxed}$ info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

 Project Name:
 Osaca (11056)
 Project No.:
 22-154
 Sample Date:
 23-Sep-22

Borehole/Test Pit ID.: TP22-11 Sample No./Depth: GS3 LAB ID: 22HYD-230

OH envelope T > 50 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	99.9
2.000	99.9
0.850	99.8
0.425	99.3
0.250	98.5
0.075	95.6

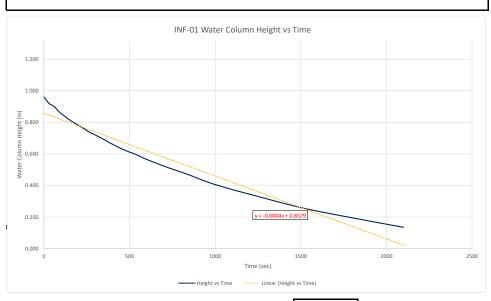
Estimated T > 50 min/cm

Hydrometer (mm)	% Passing
0.034	87.8
0.025	81.7
0.017	74.1
0.010	60.5
0.008	51.4
0.006	45.4
0.003	30.3
0.001	19.7

Appendix D

Infiltration Graphs

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-01 Project: Site Location: Test ID:


Date: Start Time: Test No.

11056 26-Sep-22 12:30 PM

PROJECT NO.:

0.42

Depth of Test Pit (m):	1.4	Pipe Stickup (m):	0.34	Total Pipe Length(m):	1.56	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Ra (m/sec)
0	-	0.600	0.960	-	-	
30	30	0.640	0.92	0.040	1.333E-03	1.333E-03
60	30	0.660	0.90	0.020	6.667E-04	1.000E-03
90	30	0.695	0.87	0.035	1.167E-03	1.056E-03
120	30	0.720	0.84	0.025	8.333E-04	1.000E-03
150	30	0.745	0.82	0.025	8.333E-04	9.667E-04
180	30	0.765	0.80	0.020	6.667E-04	9.167E-04
210	30	0.785	0.78	0.020	6.667E-04	8.810E-04
240	30	0.805	0.76	0.020	6.667E-04	8.542E-04
270	30	0.825	0.74	0.020	6.667E-04	8.333E-04
300	30	0.840	0.72	0.015	5.000E-04	8.000E-04
360	60	0.875	0.69	0.035	5.833E-04	7.639E-04
420	60	0.910	0.65	0.035	5.833E-04	7.381E-04
480	60	0.940	0.62	0.030	5.000E-04	7.083E-04
540	60	0.965	0.60	0.025	4.167E-04	6.759E-04
600	60	0.995	0.57	0.030	5.000E-04	6.583E-04
720	120	1.045	0.52	0.050	4.167E-04	6.181E-04
840	120	1.090	0.47	0.045	3.750E-04	5.833E-04
960	120	1.140	0.42	0.050	4.167E-04	5.625E-04
1,080	120	1.180	0.38	0.040	3.333E-04	5.370E-04
1,200	120	1.215	0.35	0.035	2.917E-04	5.125E-04
1,500	300	1.300	0.26	0.085	2.833E-04	4.667E-04
1,800 2,100	300 300	1.365 1.425	0.20 0.14	0.065 0.060	2.167E-04 2.000E-04	4.250E-04 3.929E-04
	measurement below t used for statistical ana	op of measuring pipe at the lysis	start of the test.			
				(m/sec)	(mm/sec)	(mm/hour)
Maxim	num Infiltration Rate Be	etween Sampling Intervals -		1.33E-03	1.33E+00	4800
Minim	num Infiltration Rate Be	etween Sampling Intervals -		2.00E-04	2.00E-01	720
Med	dian Infiltration Rate Be	etween Sampling Intervals -		5.00E-04	5.00E-01	1800
Average Infiltration Rate Between Sampling Intervals -				5.70E-04	5.70E-01	2053
	Cumulative Infiltration	on Rate for Entire Data Set -		3.93E-04	3.93E-01	1414
		In-situ Infiltratio	n Rate Measured in	n the Field (mm/sec):	0.39	

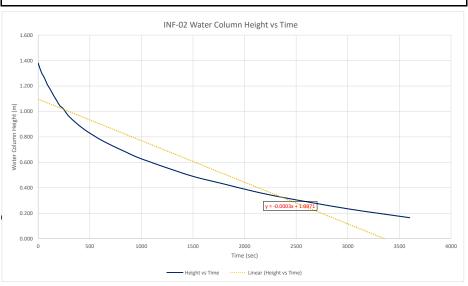
Calculated Percolation Time (T) based on field infiltration (min/cm):

	Test 1 - Observed
Test Duration (seconds)	2,100
Total Drop Distance (mm)	825
Total Number of Measured Intervals	24
Infiltration Rate (mm/sec) - Test Average	0.39
Infiltration Rate (mm/hour) - Test Average	1414
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.42

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON Project: Site Location:

Date: Start Time: Test No. Test ID:

0.34


1215

0.49

PROJECT NO.:

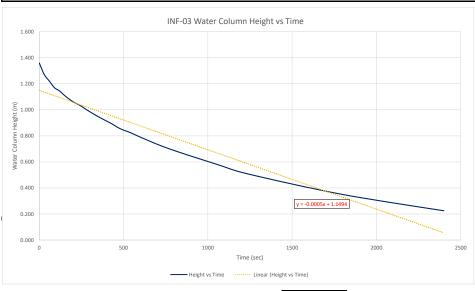
11056 27-Sep-22 10:40 AM

Depth of Test Pit (m):	1	Pipe Stickup (m):	1.245	Total Pipe Length(m):	2.41	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	1.025	1.380	-		
30	30	1.095	1.31	0.070	2.333E-03	2.333E-03
60	30	1.140	1.27	0.045	1.500E-03	1.917E-03
90	30	1.195	1.21	0.055	1.833E-03	1.889E-03
120	30	1.235	1.17	0.040	1.333E-03	1.750E-03
150	30	1.280	1.13	0.045	1.500E-03	1.700E-03
180	30	1.320	1.09	0.040	1.333E-03	1.639E-03
210	30	1.360	1.05	0.040	1.333E-03	1.595E-03
240	30	1.380	1.03	0.020	6.667E-04	1.479E-03
270	30	1.415	0.99	0.035	1.167E-03	1.444E-03
300	30	1.445	0.96	0.030	1.000E-03	1.400E-03
360	60	1.490	0.92	0.045	7.500E-04	1.292E-03
420	60	1.530	0.88	0.040	6.667E-04	1.202E-03
480	60	1.565	0.84	0.035	5.833E-04	1.125E-03
540	60	1.595	0.81	0.030	5.000E-04	1.056E-03
600	60	1.625	0.78	0.030	5.000E-04	1.000E-03
720	120	1.675	0.73	0.050	4.167E-04	9.028E-04
840	120	1.720	0.69	0.045	3.750E-04	8.274E-04
960	120	1.765	0.64	0.045	3.750E-04	7.708E-04
1,080	120	1.800	0.61	0.035	2.917E-04	7.176E-04
1,200	120	1.835	0.57	0.035	2.917E-04	6.750E-04
1,500	300	1.915	0.49	0.080	2.667E-04	5.933E-04
1,800	300	1.975	0.43	0.060	2.000E-04	5.278E-04
2,100	300	2.035	0.37	0.060	2.000E-04	4.810E-04
2,400	300	2.085	0.32	0.050	1.667E-04	4.417E-04
3,000	600	2.170	0.24	0.085	1.417E-04	3.817E-04
3,600	600	2.240	0.17	0.070	1.167E-04	3.375E-04
	es measurement below used for statistical an	v top of measuring pipe at t alysis	he start of the test.	(m/cos)	(mm/sss)	(mm /h a ·····
Maxim	um Infiltration Rate Re	etween Sampling Intervals -		(m/sec) 2.33E-03	(mm/sec) 2.33E+00	(mm/hour) 8400
		etween Sampling Intervals		1.17E-04	1.17E-01	420
		etween Sampling Intervals		5.42E-04	5.42E-01	1950
		tween Sampling Intervals -		7.63E-04	7.63E-01	2747

In-situ Infiltration Rate Measured in the Field (mm/sec):

In-situ Infiltration Rate Measured in the Field (mm/hour):

Calculated Percolation Time (T) based on field infiltration (min/cm):


	Test 1 - Observed
Test Duration (seconds)	3,600
Total Drop Distance (mm)	1215
Total Number of Measured Intervals	27
Infiltration Rate (mm/sec) - Test Average	0.34
Infiltration Rate (mm/hour) - Test Average	1215
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.49

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-03

PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 1:44 PM

Depth of Test Pit (m):	0.9	Pipe Stickup (m):	1.17	Total Pipe Length(m):	2.27	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	0.910	1.360	-	-	-
30	30	1.000	1.27	0.090	3.000E-03	3.000E-03
60	30	1.050	1.22	0.050	1.667E-03	2.333E-03
90	30	1.100	1.17	0.050	1.667E-03	2.111E-03
120	30	1.125	1.15	0.025	8.333E-04	1.792E-03
150	30	1.160	1.11	0.035	1.167E-03	1.667E-03
180	30	1.190	1.08	0.030	1.000E-03	1.556E-03
210	30	1.215	1.06	0.025	8.333E-04	1.452E-03
240	30	1.235	1.04	0.020	6.667E-04	1.354E-03
270	30	1.260	1.01	0.025	8.333E-04	1.296E-03
300	30	1.285	0.99	0.025	8.333E-04	1.250E-03
360	60	1.330	0.94	0.045	7.500E-04	1.167E-03
420	60	1.370	0.90	0.040	6.667E-04	1.095E-03
480	60	1.415	0.86	0.045	7.500E-04	1.052E-03
540	60	1.445	0.83	0.030	5.000E-04	9.907E-04
600	60	1.480	0.79	0.035	5.833E-04	9.500E-04
720	120	1.545	0.73	0.065	5.417E-04	8.819E-04
840	120	1.600	0.67	0.055	4.583E-04	8.214E-04
960	120	1.650	0.62	0.050	4.167E-04	7.708E-04
1,080	120	1.700	0.57	0.050	4.167E-04	7.315E-04
1,200	120	1.750	0.52	0.050	4.167E-04	7.000E-04
1,500	300	1.840	0.43	0.090	3.000E-04	6.200E-04
1,800	300	1.920	0.35	0.080	2.667E-04	5.611E-04
2,100	300	1.985	0.29	0.065	2.167E-04	5.119E-04
2,400	300	2.045	0.23	0.060	2.000E-04	4.729E-04
	es measurement below used for statistical an	top of measuring pipe at the	ne start of the test.			
				(m/sec)	(mm/sec)	(mm/hour)
Maxim	um Infiltration Rate Be	etween Sampling Intervals -		3.00E-03	3.00E+00	10800
Minim	um Infiltration Rate Be	etween Sampling Intervals -		2.00E-04	2.00E-01	720
Med	lian Infiltration Rate Be	etween Sampling Intervals -		6.67E-04	6.67E-01	2400
Avera	ge Infiltration Rate Be	tween Sampling Intervals -		7.91E-04	7.91E-01	2848
	Cumulative Infiltration	n Rate for Entire Data Set -		4.73E-04	4.73E-01	1703
		In-situ Infiltratio	n Rate Measured in	n the Field (mm/sec):	0.47	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	1703	
	,	alculated Percolation Time	(-) (-)		0.35	

	Test 1 - Observed
Test Duration (seconds)	2,400
Total Drop Distance (mm)	1135
Total Number of Measured Intervals	25
Infiltration Rate (mm/sec) - Test Average	0.47
Infiltration Rate (mm/hour) - Test Average	1703
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.35

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-05

PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 8:02 AM

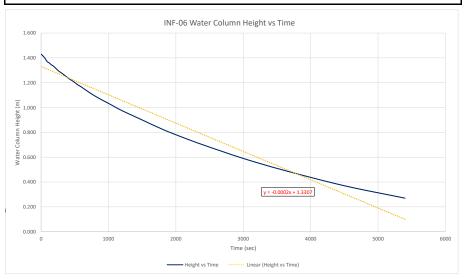
Depth of Test Pit (m):	1.14	Pipe Stickup (m):	1.37	Total Pipe Length(m):	2.38	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rat (m/sec)
0	-	0.900	1.480	=		
30	30	0.950	1.43	0.050	1.667E-03	1.667E-03
60	30	1.090	1.29	0.140	4.667E-03	3.167E-03
90	30	1.145	1.24	0.055	1.833E-03	2.722E-03
120	30	1.190	1.19	0.045	1.500E-03	2.417E-03
150	30	1.225	1.16	0.035	1.167E-03	2.167E-03
180	30	1.260	1.12	0.035	1.167E-03	2.000E-03
210	30	1.300	1.08	0.040	1.333E-03	1.905E-03
240	30	1.330	1.05	0.030	1.000E-03	1.792E-03
270	30	1.365	1.02	0.035	1.167E-03	1.722E-03
300	30	1.395	0.99	0.030	1.000E-03	1.650E-03
360	60	1.460	0.92	0.065	1.083E-03	1.556E-03
420	60	1.515	0.87	0.055	9.167E-04	1.464E-03
480	60	1.565	0.82	0.050	8.333E-04	1.385E-03
540	60	1.615	0.77	0.050	8.333E-04	1.324E-03
600	60	1.660	0.72	0.045	7.500E-04	1.267E-03
720	120	1.755	0.63	0.095	7.917E-04	1.188E-03
840	120	1.830	0.55	0.075	6.250E-04	1.107E-03
960	120	1.900	0.48	0.070	5.833E-04	1.042E-03
1,080	120	1.965	0.42	0.065	5.417E-04	9.861E-04
1,200	120	2.025	0.36	0.060	5.000E-04	9.375E-04
1,500	300	2.155	0.23	0.130	4.333E-04	8.367E-04
1,620	120	2.195	0.19	0.040	3.333E-04	7.994E-04
1,740	120	2.235	0.15	0.040	3.333E-04	7.672E-04
	es measurement below	v top of measuring pipe at th	ne start of the test.			
	t asca for statistical an	u., 5.5		(m/sec)	(mm/sec)	(mm/hour)
Maxim	num Infiltration Rate B	etween Sampling Intervals -		4.67E-03	4.67E+00	16800
		etween Sampling Intervals -		3.33E-04	3.33E-01	1200
Mei	dian Infiltration Rate B	etween Sampling Intervals -		9.17E-04	9.17E-01	3300
Avera	ge Infiltration Rate Be	tween Sampling Intervals -		1.09E-03	1.09E+00	3922
	Cumulative Infiltration	on Rate for Entire Data Set -		7.67E-04	7.67E-01	2762
		In-situ Infiltratio	n Rate Measured ii	n the Field (mm/sec):	0.77	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	2762	
		Calculated Percolation Time			0.22	

	Ī	Test 1 - Observed
Test Duration (seconds)		1,740
Total Drop Distance (mm)		1335
Total Number of Measured Intervals		24
Infiltration Rate (mm/sec) - Test Average		0.77
Infiltration Rate (mm/hour) - Test Average		2762
Calculated Percolation Time (T) based on Field Infiltration (min/cm)		0.22

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON

PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 9:04 AM 1


			1.165	Total Pipe Length(m):	2.27	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	0.840	1.430	-	-	
30	30	0.855	1.42	0.015	5.000E-04	5.000E-04
60	30	0.875	1.40	0.020	6.667E-04	5.833E-04
90	30	0.900	1.37	0.025	8.333E-04	6.667E-04
120	30	0.910	1.36	0.010	3.333E-04	5.833E-04
150	30	0.925	1.35	0.015	5.000E-04	5.667E-04
180	30	0.935	1.34	0.010	3.333E-04	5.278E-04
210	30	0.950	1.32	0.015	5.000E-04	5.238E-04
240	30	0.965	1.31	0.015	5.000E-04	5.208E-04
270	30	0.980	1.29	0.015	5.000E-04	5.185E-04
300	30	0.990	1.28	0.010	3.333E-04	5.000E-04
360	60	1.015	1.26	0.025	4.167E-04	4.861E-04
420	60	1.040	1.23	0.025	4.167E-04	4.762E-04
480	60	1.060	1.21	0.020	3.333E-04	4.583E-04
540	60	1.085	1.19	0.025	4.167E-04	4.537E-04
600	60	1.105	1.17	0.020	3.333E-04	4.417E-04
720	120	1.150	1.12	0.045	3.750E-04	4.306E-04
840	120	1.190	1.08	0.040	3.333E-04	4.167E-04
960	120	1.225	1.05	0.035	2.917E-04	4.010E-04
1,080	120	1.260	1.01	0.035	2.917E-04	3.889E-04
1,200	120	1.295	0.98	0.035	2.917E-04	3.792E-04
1,500	300	1.370	0.90	0.075	2.500E-04	3.533E-04
1,800	300	1.445	0.83	0.075	2.500E-04	3.361E-04
2,100	300	1.510	0.76	0.065	2.167E-04	3.190E-04
2,400	300	1.570	0.70	0.060	2.000E-04	3.042E-04
3,000	600	1.680	0.59	0.110	1.833E-04	2.800E-04
3,600	600	1.775	0.50	0.095	1.583E-04	2.597E-04
4,500	900	1.900	0.37	0.125	1.389E-04	2.356E-04
5,400	900	2.000	0.27	0.100	1.111E-04	2.148E-04

In-situ Infiltration Rate Measured in the Field (mm/sec): 0.21 In-situ Infiltration Rate Measured in the Field (mm/hour): 773 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.78

2.15E-04

2.15E-01

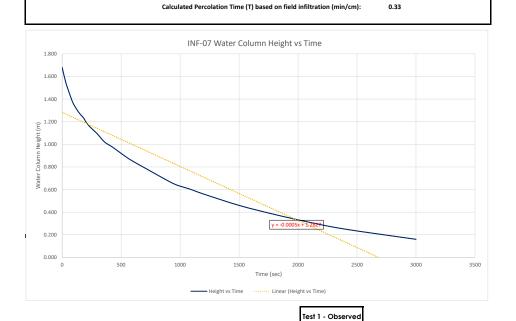
773

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	1160
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.21
Infiltration Rate (mm/hour) - Test Average	773
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.78

Cumulative Infiltration Rate for Entire Data Set -

Project: Osaca Hillstreet subdivision
Site Location: 5868 County road 65, Osaca, ON

Test ID: INF-07


 PROJECT NO.:
 11056

 Date:
 27-Sep-22

 Start Time:
 4:07 PM

 Test No.
 1

Depth of Test Pit (m):	0.97	Pipe Stickup (m):	1.41	Total Pipe Length(m):	2.38	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rat (m/sec)
0	-	0.700	1.680	-		
30	30	0.830	1.55	0.130	4.333E-03	4.333E-03
60	30	0.925	1.46	0.095	3.167E-03	3.750E-03
90	30	1.010	1.37	0.085	2.833E-03	3.444E-03
120	30	1.065	1.32	0.055	1.833E-03	3.042E-03
150	30	1.110	1.27	0.045	1.500E-03	2.733E-03
180	30	1.145	1.24	0.035	1.167E-03	2.472E-03
210	30	1.195	1.19	0.050	1.667E-03	2.357E-03
240	30	1.230	1.15	0.035	1.167E-03	2.208E-03
270	30	1.260	1.12	0.030	1.000E-03	2.074E-03
300	30	1.290	1.09	0.030	1.000E-03	1.967E-03
360	60	1.360	1.02	0.070	1.167E-03	1.833E-03
420 480	60 60	1.400 1.445	0.98 0.94	0.040 0.045	6.667E-04 7.500E-04	1.667E-03 1.552E-03
540	60	1.490	0.89	0.045	7.500E-04 7.500E-04	1.463E-03
600	60	1.530	0.85	0.043	6.667E-04	1.383E-03
720	120	1.600	0.78	0.070	5.833E-04	1.250E-03
840	120	1.670	0.71	0.070	5.833E-04	1.155E-03
960	120	1.735	0.65	0.065	5.417E-04	1.078E-03
1,080	120	1.775	0.61	0.040	3.333E-04	9.954E-04
1,200	120	1.820	0.56	0.045	3.750E-04	9.333E-04
1,500	300	1.920	0.46	0.100	3.333E-04	8.133E-04
1,800	300	2.000	0.38	0.080	2.667E-04	7.222E-04
2,100	300	2.070	0.31	0.070	2.333E-04	6.524E-04
2,400	300	2.130	0.25	0.060	2.000E-04	5.958E-04
3,000	600	2.220	0.16	0.090	1.500E-04	5.067E-04
	es measurement below used for statistical an	top of measuring pipe at thalysis	ne start of the test.	(m/sec)	(mm/sec)	(mm/hour)
					, , ,	, , ,
		etween Sampling Intervals -		4.33E-03	4.33E+00	15600
Minim	um Infiltration Rate B	etween Sampling Intervals -		1.50E-04	1.50E-01	540
Med	ian Infiltration Rate B	etween Sampling Intervals -		7.50E-04	7.50E-01	2700
Averag	e Infiltration Rate Be	tween Sampling Intervals -		1.09E-03	1.09E+00	3926
	Cumulative Infiltration	on Rate for Entire Data Set -		5.07E-04	5.07E-01	1824
		In-situ Infiltration	n Rate Measured in	n the Field (mm/sec):	0.51	

Test Duration (seconds)

Total Drop Distance (mm)

Total Number of Measured Intervals

Infiltration Rate (mm/sec) - Test Average

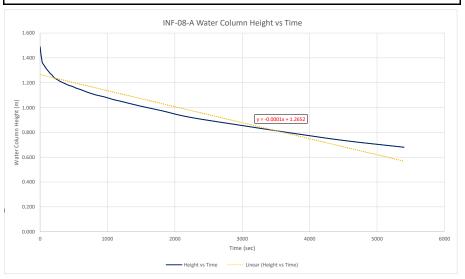
Infiltration Rate (mm/hour) - Test Average

Calculated Percolation Time (T) based on Field Infiltration

3,000

1520 26

0.51

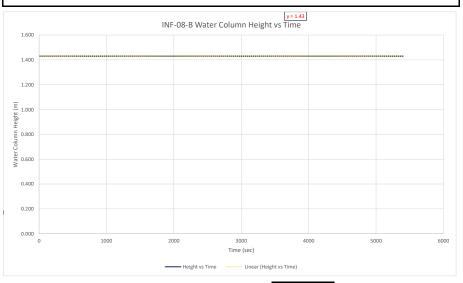

1824

0.33

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-08-A

PROJECT NO.: Date: Start Time: Test No. 11056 27-Sep-22 12:08 PM 1

Depth of Test Pit (m):	0.55	Pipe Stickup (m):	0.945	Total Pipe Length(m):	1.56	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rat (m/sec)
0		0.070	1.490	=	-	
30	30	0.190	1.37	0.120	4.000E-03	4.000E-03
60	30	0.220	1.34	0.030	1.000E-03	2.500E-03
90	30	0.245	1.32	0.025	8.333E-04	1.944E-03
120	30	0.265	1.30	0.020	6.667E-04	1.625E-03
150	30	0.285	1.28	0.020	6.667E-04	1.433E-03
180	30	0.300	1.26	0.015	5.000E-04	1.278E-03
210	30	0.320	1.24	0.020	6.667E-04	1.190E-03
240	30	0.330	1.23	0.010	3.333E-04	1.083E-03
270	30	0.340	1.22	0.010	3.333E-04	1.000E-03
300	30	0.350	1.21	0.010	3.333E-04	9.333E-04
360	60	0.365	1.20	0.015	2.500E-04	8.194E-04
420	60	0.380	1.18	0.015	2.500E-04	7.381E-04
480 540	60	0.390	1.17	0.010	1.667E-04	6.667E-04
600	60 60	0.405 0.415	1.16 1.15	0.015 0.010	2.500E-04 1.667E-04	6.204E-04 5.750E-04
720	120	0.440	1.12	0.010	2.083E-04	5.139E-04
840	120	0.460	1.10	0.023	1.667E-04	4.643E-04
960	120	0.475	1.09	0.020	1.250E-04	4.219E-04
1,080	120	0.495	1.07	0.020	1.667E-04	3.935E-04
1,200	120	0.510	1.05	0.015	1.250E-04	3.667E-04
1,500	300	0.550	1.01	0.040	1.333E-04	3.200E-04
1,800	300	0.585	0.98	0.035	1.167E-04	2.861E-04
2,100	300	0.625	0.94	0.040	1.333E-04	2.643E-04
2,400	300	0.655	0.91	0.030	1.000E-04	2.438E-04
3,000	600	0.705	0.86	0.050	8.333E-05	2.117E-04
3,600	600	0.755	0.81	0.050	8.333E-05	1.903E-04
4,500	900	0.825	0.74	0.070	7.778E-05	1.678E-04
5,400	900	0.880	0.68	0.055	6.111E-05	1.500E-04
4,500 5,400 Depth at time 0 indicate	900 900	0.825 0.880 v top of measuring pipe at th	0.74 0.68	0.070	7.778E-05	1.678E-04
		etween Sampling Intervals - etween Sampling Intervals -		4.00E-03 6.11E-05	4.00E+00 6.11E-02	14400 220
		· -				
		etween Sampling Intervals - tween Sampling Intervals -		1.88E-04 4.28E-04	1.88E-01 4.28E-01	675 1543
Avelue		· -				
		on Rate for Entire Data Set -	n Rate Measured ii	1.50E-04	1.50E-01	540
				the Field (mm/hour):		
	c	alculated Percolation Time	(T) based on field i	nfiltration (min/cm):	1.11	

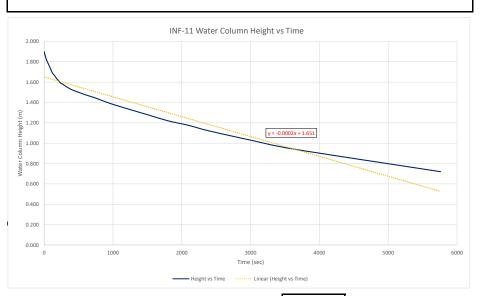

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	810
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.15
Infiltration Rate (mm/hour) - Test Average	540
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	1.11

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-08-B

PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 11:48 AM 1

Depth of Test Pit (m):	2.08	Pipe Stickup (m):	0.925	Total Pipe Length(m):	3.08	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	1.650	1.430	=		
30	30	1.650	1.43	0.000	0.000E+00	0.000E+00
60	30	1.650	1.43	0.000	0.000E+00	0.000E+00
90	30	1.650	1.43	0.000	0.000E+00	0.000E+00
120	30	1.650	1.43	0.000	0.000E+00	0.000E+00
150	30	1.650	1.43	0.000	0.000E+00	0.000E+00
180	30	1.650	1.43	0.000	0.000E+00	0.000E+00
210	30	1.650	1.43	0.000	0.000E+00	0.000E+00
240	30	1.650	1.43	0.000	0.000E+00	0.000E+00
270	30	1.650	1.43	0.000	0.000E+00	0.000E+00
300	30	1.650	1.43	0.000	0.000E+00	0.000E+00
360	60	1.650	1.43	0.000	0.000E+00	0.000E+00
420	60	1.650	1.43	0.000	0.000E+00	0.000E+00
480	60	1.650	1.43	0.000	0.000E+00	0.000E+00
540	60	1.650	1.43	0.000	0.000E+00	0.000E+00
600	60	1.650	1.43	0.000	0.000E+00	0.000E+00
720	120	1.650	1.43	0.000	0.000E+00	0.000E+00
840	120	1.650	1.43	0.000	0.000E+00	0.000E+00
960	120	1.650	1.43	0.000	0.000E+00	0.000E+00
1,080	120	1.650	1.43	0.000	0.000E+00	0.000E+00
1,200	120	1.650	1.43	0.000	0.000E+00	0.000E+00
1,500	300	1.650	1.43	0.000	0.000E+00	0.000E+00
1,800	300	1.650	1.43	0.000	0.000E+00	0.000E+00
2,100	300	1.650	1.43	0.000	0.000E+00	0.000E+00
2,400	300	1.650	1.43	0.000	0.000E+00	0.000E+00
3,000	600	1.650	1.43	0.000	0.000E+00	0.000E+00
3,600	600	1.650	1.43	0.000	0.000E+00	0.000E+00
4,500	900	1.650	1.43	0.000	0.000E+00	0.000E+00
5,400	900	1.650	1.43	0.000	0.000E+00	0.000E+00
	es measurement below used for statistical and	top of measuring pipe at thalysis	ne start of the test.			
				(m/sec)	(mm/sec)	(mm/hour)
Maxim	um Infiltration Rate Be	etween Sampling Intervals -		0.00E+00	0.00E+00	0
Minim	um Infiltration Rate Be	etween Sampling Intervals -		0.00E+00	0.00E+00	0
Med	lian Infiltration Rate Be	etween Sampling Intervals -		0.00E+00	0.00E+00	0
Avera	ge Infiltration Rate Be	tween Sampling Intervals -		0.00E+00	0.00E+00	0
	Cumulative Infiltration	n Rate for Entire Data Set -		0.00E+00	0.00E+00	0
		In-situ Infiltratio	n Rate Measured ii	n the Field (mm/sec):	0.00	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	0	
		alculated Percolation Time	(T) based on field i	nfiltration (min/cm):	#DIV/0!	

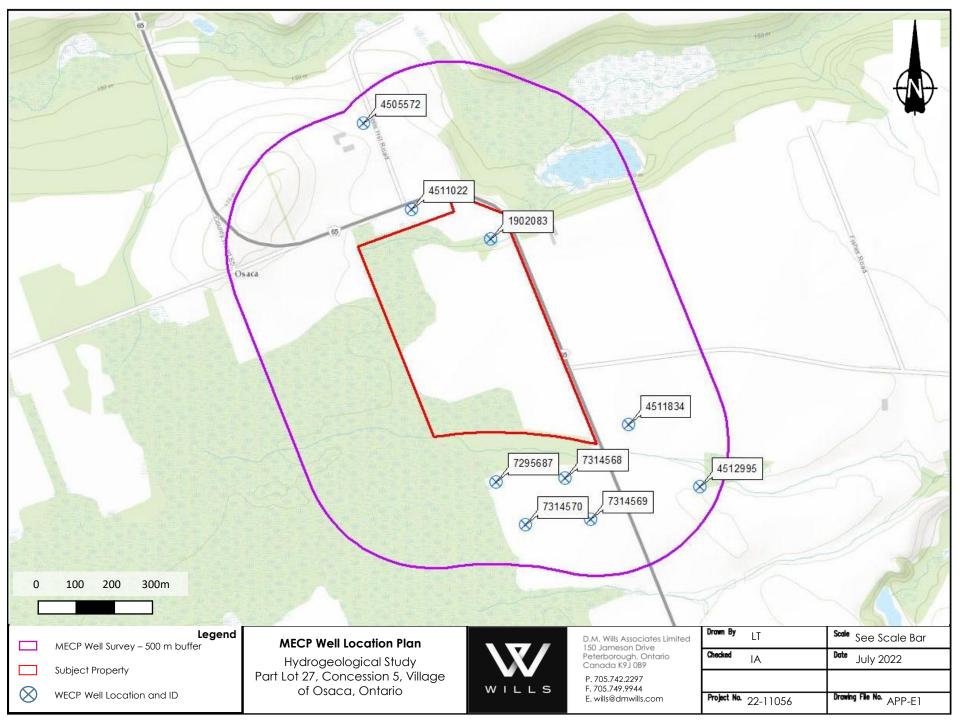


	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	0
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.00
Infiltration Rate (mm/hour) - Test Average	0
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	#DIV/0!

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON

PROJECT NO.: Date: Start Time: Test No. 11056 27-Sep-22 2:53 PM

Depth of Test Pit (m):	1.13	Pipe Stickup (m):	1.02	Total Pipe Length(m):	2.30	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	0.400	1.900	-		
30	30	0.475	1.83	0.075	2.500E-03	2.500E-03
60	30	0.520	1.78	0.045	1.500E-03	2.000E-03
90	30	0.045	1.500E-03	1.833E-03		
120	30	0.610	1.69	0.045	1.500E-03	1.750E-03
150	30	0.635	1.67	0.025	8.333E-04	1.567E-03
180	30	0.665	1.64	0.030	1.000E-03	1.472E-03
210	30	0.685	1.62	0.020	6.667E-04	1.357E-03
240	30	0.710	1.59	0.025	8.333E-04	1.292E-03
270	30	0.720	1.58	0.010	3.333E-04	1.185E-03
300	30	0.735	1.57	0.015	5.000E-04	1.117E-03
360	60	0.760	1.54	0.025	4.167E-04	1.000E-03
420	60	0.780	1.52	0.020	3.333E-04	9.048E-04
480	60	0.795	1.51	0.015	2.500E-04	8.229E-04
540	60	0.810	1.49	0.015	2.500E-04	7.593E-04
600	60	0.825	1.48	0.015	2.500E-04	7.083E-04
720	120	0.850	1.45	0.025	2.083E-04	6.250E-04
840	120	0.880	1.42	0.030	2.500E-04	5.714E-04
960	120	0.910	1.39	0.030	2.500E-04	5.313E-04
1,080	120	0.935	1.37	0.025	2.083E-04	4.954E-04
1,200	120	0.960	1.34	0.025	2.083E-04	4.667E-04
1,500	300	1.020	1.28	0.060	2.000E-04	4.133E-04
1,800	300	1.080	1.22	0.060	2.000E-04	3.778E-04
2,100	300	1.125	1.18	0.045	1.500E-04	3.452E-04
2,400	300	1.180	1.12	0.055	1.833E-04	3.250E-04
3,000	600	1.270	1.03	0.090	1.500E-04	2.900E-04
3,600	600	1.355	0.95	0.085	1.417E-04	2.653E-04
5,760	2,160	1.580	0.72	0.225	1.042E-04	2.049E-04
	es measurement below used for statistical an	v top of measuring pipe at t alysis	he start of the test.			, ,
				(m/sec)	(mm/sec)	(mm/hour)
		etween Sampling Intervals		2.50E-03	2.50E+00	9000
Minim	ium Infiltration Rate B	etween Sampling Intervals -	-	1.04E-04	1.04E-01	375
Med	lian Infiltration Rate B	etween Sampling Intervals -		2.50E-04	2.50E-01	900
Averag	ge Infiltration Rate Be	tween Sampling Intervals -	•	5.53E-04	5.53E-01	1989
	Cumulative Infiltration	on Rate for Entire Data Set -	-	2.05E-04	2.05E-01	738
		In-situ Infiltratio	on Rate Measured i	n the Field (mm/sec):	0.20	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	738	
	c	alculated Percolation Time	(T) based on field	infiltration (min/cm):	0.81	



	Test 1 - Obs	served
Test Duration (seconds)	5,760)
Total Drop Distance (mm)	1180)
Total Number of Measured Intervals	28	
Infiltration Rate (mm/sec) - Test Average	0.20	
Infiltration Rate (mm/hour) - Test Average	738	
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.81	

Appendix E

MECP Well Record Survey

APPENDIX E-2 - MECP WELL SUMMARY Well Record Summary - Bedrock

Project No.: 11056

Lot No.	UTM	M.O.E.	Well	Wate	r Found	Statio	: Level	REC Pun	np Rate	Well	Depth	Depth	to Bedrock	Comments
LOI NO.	UIM	Well No.	Use	Feet	Metres	Feet	Metres	lgpm	L/min	Feet	Metres	Feet	Metres	Comments
Con. 05														
Lot 27	705556 4875265	7295687	Unknown	-	-	-	-	-	-	-	-	-	-	No information available
Lot 26	Unknown	4512995	Domestic	44	13.4	57	17.4	4.16	18.9	156	47.5	144	43.9	Fresh water observed from 44-156 ft. in limestone bedrock.
Lot 27	705637 4875147	7314570	Domestic	32	9.8	27.9	8.5	8.33	37.8	157	47.9	147	44.8	Fresh water observed at 32 ft. in limestone bedrock.
Con. 6														
Lot 27	Unknown	4505572	Domestic	130	39.6	95	29.0	0.83	3.8	135	41.1	112	34.1	Fresh water observed at 130 ft. in limestone bedrock.

Number of Wells = 4

	Water Found		Statio	: Level	REC Pun	np Rate	Well [Depth	Depth to Bedrock	
	Feet	Metres	Feet	Metres	Igpm	L/min	Feet	Metres	Feet	Metres
AVERAGE	68.7	20.9	60.0	18.3	4.4	20.2	149.3	45.5	134.3	40.9
MAXIMUM	130.0	39.6	95.0	29.0	8.3	37.8	157.0	47.9	147.0	44.8
MINIMUM	32.0	9.8	27.9	8.5	0.8	3.8	135.0	41.1	112.0	34.1

APPENDIX E-2 - MECP WELL SUMMARY Well Record Summary - Overburden Project No.: 11056

Lot No.	UTM	M.O.E.	M.O.E. Well	Water Found		Static Level		REC Pump Rate		Well Depth		Depth to Bedrock		Commonle
LOI NO.	UIM	Well No.	Use	Feet	Metres	Feet	Metres	lgpm	L/min	Feet	Metres	Feet	Metres	Comments
Con. 5														
Lot 26	Unknown	4511834	Domestic	58	17.7	30	9.1	3.33	15.1	58	17.7	-	-	Fresh water observed at 58 ft. in brown sand
Lot 27	705815 4875162	7314569	Domestic	32	9.8	21.6	6.6	5.83	26.5	151	46.0	-	-	Fresh water observed at 32 ft. in coarse gravel
Lot 27	705746 4875275	7314568	Domestic	40	12.2	21	6.4	6.66	30.2	101	30.8	-	-	Fresh water observed at 40 ft. in coarse gravel
Lot 27	705527 4875703	1902083	Domestic	17	5.2	18	5.5	1.67	7.6	25	7.6	-	-	Fresh water observed at 17 ft. in clay material
Lot 27	-	4511022	-	-	-	-	-	10	45.4	13	4.0	-	-	No information - well record in relation to well cleanout of sand and gravel

Number of Wells = 5

	Water Found		Statio	: Level)	Well	Depth	Depth to Bedrock	
	Feet	Metres	Feet	Metres	lgpm	L/min	Feet	Metres	Feet	Metres
AVERAGE	36.8	11.2	22.7	6.9	5.5	25.0	69.6	21.2	-	-
MAXIMUM	58.0	17.7	30.0	9.1	10.0	45.4	151.0	46.0	-	-
MINIMUM	17.0	5.2	18.0	5.5	1.7	7.6	13.0	4.0	-	-

Appendix F

MECP Well Records – Well ID A377795, A377796, A377799, A395881, A395882 and A395883

Well Record - Regulation 903

Ontario Water Resources Act

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: WellRecordSubmission@ontario.ca

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone.

Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record - Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

2193E (2020/01) Page 2 of 7

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: https://helpx.adobe.com/acrobat/using/digital-ids.html

2193E (2020/01) Page 3 of 7

Well Record - Regulation 903 Ontario Water Resources Act

Page 4 of 7

Notice of Collection of Personal Information

Well Depth *

2193E (2020/01)

36

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's

well record da	itaba er Se	ise and rvice F	d made p Represer	oublicly ntative a	availa at the	able. Questic Wells Help [ns abou	ut this collec	ction sh	ould be dire	ecte	d to the Water rio M9P 3V6, at			
Fields marked	with a	an aste	risk (*) ar	e manda	atory.										
										Well Tag Number *					
									A377795						
Type *										<u> </u>					
✓ Constructio	n	A	bandonn	nent											
Measurement	reco	rded in	n: *												
Metric		✓ Ir	mperial												
1. Well Own	er's	Infor	mation												
Last Name and	First	t Name	, or Orga	nization	is ma	ndatory. *									
Last Name							First Name								
Organization Hillstreet Deve	elopr	ments	Ltd				Email Address								
Current Addre	ss														
Unit Number		Street 524	Number *	I	eet Na sebar	nme * nk Rd	City/Town/Village Pickering								
Country Canada	'					Province Ontario			Postal L1W 2		Tele	ephone Number			
2. Well Loca	tion	1													
Address of We	ell Lo	cation													
Unit Number	Stre 568	et Num 88	nber *	Street N						wnship pe					
Lot 27	•			Conces 5	sion			County/Dist							
City/Town Osaca			'								Postal Code				
UTM Coordinat	es Z	Zone *	Easting '	*	Nort	hing *	Municipal Plan and Sublot Num								
NAD 83		17	705444	4	487	75700	Test	UTM in Map							
Other		-			•				•						
2 Overburde	n 0=	d Dad	lrook Ma	storial *	,										

General Colour Most Common Material Other Materials **General Description** Depth From Depth To

(ft)

			(ft)	(ft)
Brown	Sand	Loose	0	28
Brown	Medium Sand	Loose	28	36

4. Annular Sp	ace *										
Depth From	Depth To	Т	ype of Sealant Used (Mater	ial and Type)	Volume	Placed				
(ft)	(ft)					(cubic	feet)				
0	20		Bentonite Chip	s - 17	75 lbs	2.4	45				
0	20		Bentonite Slur	tonite Slurry - 24 gal 3.21							
5. Method of	Construction	*									
✓ Cable Tool		Conventional)	Rotary (Reverse	e) [Boring Air perc	ussion Dia	amond				
JettingOther (speci	Driving	Digging	Rotary (Air)		Augering Direct P	ush					
6. Well Use *											
Public	Inc	lustrial	Cooling & Air (Condit	ioning						
✓ Domestic	Co	mmercial	Not Used								
Livestock	☐ Mu	ınicipal	Monitoring								
Irrigation	Te	st Hole	Dewatering								
Other (speci	ify)										
7. Status of W	Vell *										
✓ Water Suppl	ly	Replaceme	ent Well	T	Гest Hole						
Recharge W	<i>V</i> ell	Dewatering	g Well		Observation and/or Monit	toring Hole					
Alteration (C	Construction)	Abandone	d, Insufficient Supply	\Box A	Abandoned, Poor Water	Quality					
Abandoned,	other (specify)	_									
Other (speci	ify)										
8. Construction	on Record - 0	Casing * (use	e negative number(s)	to indi	cate depth above ground	d surface)					
Inside			al (Galvanized, Fibreg	glass,	Wall	Depth From	Depth T				
Diamete (in)	·	Concrete	e, Plastic, Steel)		Thickness	(ft)	(ft)				
(111)						(11)	(11)				

9. Construction Record - Screen												
Outside Diameter (in)	Material (Plastic, Galvanized, Steel)	Slot Number	Depth From (ft)	Depth To (ft)								
5.5	Stainless Steel	14	32	36								

Steel

Steel

6.25

5.25

-2

29

32

32

0.188

0.188

2193E (2020/01) Page 5 of 7

10. Water Det	ails														
Water found at	Depth 38	3	(ft)	Gas	Kind of w	vater	Fres	h 🗸 L	Intested	O1	ther				
			<u>'</u>												
11. Hole Diam	neter														
De	epth Fror	n		Depth To					Diameter						
	(ft)							(in)							
	0				20	ı					8.75				
	20				36						6.58				
12. Results o	f Well Y	ield Te	esting												
Pumping Dis	scontinue	ed													
Explain															
If flowing give ra	ate														
Flowing (GPM)															
Draw down							_			_					
Time (min)	Static Level	1	2	3	4	5	10	15	20	25	30	40	50	60	
Water Level (ft)	10	11.2	2 13.4	15.6	16.1	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	
Recovery			•	•			•	•	•				•		
Time (mir	۱)	1	2	3	4	5	10	15	20	25	30	40	50	60	
Water Lev (ft)	'el	14.1	12.2	10.5	10	10	10	10	10	10	10	10	10	10	
After test of wel	l yield, w	ater wa	S		I				·	·					
Clear and sa	and free	Otl	ner (spec	cify)											
Pump intake se	t at Pun	nping ra	ıte	Duration	of pump	ing		Final wa	ater leve	I end of	pumping	g D	isinfected	? *	
33	(ft) 10		(GPM)	1	hrs +	00	0 min 16.1 (ft) ✓ Yes ☐ No								
Recommended	pump de	epth	Recom	mended p	oump rate	e We	ll produ	ction							
33		(ft)	10		(GPN	1) 10			(GPM)						
13. Map of W	ell Loca	tion *													

2193E (2020/01) Page 6 of 7

Make map area bigger

Map 1. Please Click the map area below to import an image file to use as the map.

14. Information										
Well owner's information packa ✓ Yes ☐ No	ge delivere	ed	Date Package Delivered (y 2023/10/03	/ууу/	mm/dd)	Date Work Con 2023/10/17	npleted (yyyy/mm/dd) *			
Comments breakaway guides @ 6' & 16 K-packer and leader pipe absand was loose with pressure	ove scree	n								
15. Well Contractor and We	ell Techni	ician	Information							
Business Name of Well Contract Herb Lang Well Drilling Ltd.	otor *		Well Co 7560	ontractor's Licens	se Number *					
Business Address					•					
Unit Number Street Number 4852 Street Name * Highway 7										
City/Town/Village * Omemee		Pro	vince I		Postal Code * K0L 2W0					
Business Telephone Number 705-799-7088	Business hlwelldril		Address gmail.com							
Last Name of Well Technician * Foster			First Name of Well Technic Nick	cian	*	Well Technic 3920	Well Technician's License Number * 3920			
16. Declaration *										
✓ I hereby confirm that I am the and accurate.	e person w	vho co	nstructed the well and I her	eby	confirm th	nat the information	on on the form is correct			
Last Name Foster		irst Na lick	ame		Email A	ddress rilling@gmail.c	om			
Signature	-		Date Su	ubmitted (yyyy/m	nm/dd)					
Nick Foster			v signed by Nick Foster 023.10.25 06:32:28 -04'00'			2023/	10/25			
17. Ministry Use Only										
Audit Number										

2193E (2020/01) Page 7 of 7

SDBJ 9K63

Ontario Water Resources Act

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: WellRecordSubmission@ontario.ca

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone.

Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record - Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

2193E (2020/01) Page 2 of 7

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: https://helpx.adobe.com/acrobat/using/digital-ids.html

2193E (2020/01) Page 3 of 7

Ontario Water Resources Act

Notice of Collection of Personal Information

Well Depth *

General Colour

38

Most Common Material

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's

well record da	ıtabase er Servi	and	l made p lepreser	oublicly ntative	and the imo available. Quest at the Wells Help ario.ca.	ions abo	ut this collec	tion should be	directe	d to the Water
Fields marked	with an	aster	risk (*) ar	e mano	latory.					
								Well Tag	Numb	er *
								A 37779	6	
Type *										
✓ Construction	n [A	bandonn	nent						
Measurement	recorde	ed in	*							
Metric	[🗸 In	nperial							
1. Well Own	er's In	forr	nation							
Last Name and Last Name	First N	ame,	or Orga	nizatior	n is mandatory. *	First N	lame			
Organization Hillstreet Deve	elopme	nts I	Ltd			Email	Address			
Current Addre	ess .					!				
Unit Number	St: 52		Number *		reet Name * osebank Rd			City/Town/Villag	je	
Country Canada					Province Ontario	Postal Code L1W 2N5				lephone Number
2. Well Loca	ition									
Address of We Unit Number	Street 5688		ıber *		Name * ession Rd. 65			Township Hope		
Lot 27				Conce 5	ssion			rict/Municipality //BERLAND		
City/Town Osaca							Province Ontario			Postal Code
UTM Coordinat	tes Zor	ne *	Easting '	+	Northing *		·	Municipal Plan	and Su	blot Number
NAD 83	17	7	705464	1	4875609	Test	UTM in Map			
Other										
3. Overburde	n and	Bed	rock Ma	terial	*					

2193E (2020/01) Page 4 of 7

General Description

Depth From

Depth To

Other Materials

(ft)

			(ft)	(ft)
Brown	Sand	Loose	0	31
Brown	Medium Sand	Loose	31	38

4. Annular Sp	pace *									
Depth From	Depth To	Т	ype of Sealant Used (I	Mater	ial and Type)	Volume	Placed			
(ft)	(ft)					(cubic	feet)			
0	20		Bentonite Chip	s - 15	50lbs	2.	1			
0	20		Bentonite Slurr	nite Slurry - 48 gals 6.42						
5. Method of	Construction) *								
✓ Cable Tool	Rotary (Conventional)	Rotary (Reverse	:) [Boring Air perc	ussion 🔲 Dia	amond			
Jetting	Driving	Digging	Rotary (Air)		Augering Direct P	ush				
Other (speci	ify)									
6. Well Use *										
Public	In-	dustrial	Cooling & Air C	Condit	ioning					
✓ Domestic	Co	ommercial	☐ Not Used							
Livestock	M	unicipal	Monitoring							
Irrigation	□ Te	st Hole	Dewatering							
Other (speci	ify)									
7. Status of W	Vell *									
✓ Water Supp	ly	Replacem	ent Well		Гest Hole					
Recharge W	V ell	Dewaterin	g Well		Observation and/or Monit	toring Hole				
Alteration (C	Construction)	Abandone	d, Insufficient Supply		Abandoned, Poor Water	Quality				
 Abandoned,	, other (specify)								
Other (speci	ify)									
8. Construction	on Record -	Casing * (us	e negative number(s) t	to indi	cate depth above ground	d surface)				
Inside Diamete	· ·		rial (Galvanized, Fibreg e, Plastic, Steel)	lass,	Wall Thickness	Depth From	Depth T			
(in)	1	Concrete	5, Fiaslic, Steel)		THICKHESS	(ft)	(ft)			
("')						(''')	(11)			

9. Construction Rec	ord - Screen			
Outside Diameter (in)	Material (Plastic, Galvanized, Steel)	Slot Number	Depth From (ft)	Depth To (ft)
5.5	Stainless Steel	14	34	38

Steel

Steel

0.188

0.188

-2

31

34

34

6.25

5.25

2193E (2020/01) Page 5 of 7

10. Water Det	ails															
Water found at	Depth 38	3	(ft)	Gas	Kind of	wate	er [Fres	h 🗸 l	Jntested	O1	ther				
			1													
11. Hole Diam	neter															
De	epth Fror	n		Depth To					Diameter							
	(ft)											(in)				
	0		20									8.75				
	20				3	8						6.58				
12. Results o	f Well Y	ield Te	esting													
Pumping Dis	scontinue	ed														
Explain																
If flowing give rate																
Flowing (GPM)																
Draw down				_						_	•					
Time (min)	Static Level	1	2	3	4		5	10	15	20	25	30	40	. 5	50	60
Water Level (ft)	10	17	20.5	20.9	21.7	2	2.2	23.2	23.4	23.4	23.4	23.5	23.	5 23	3.6	23.6
Recovery		•							•		•		•			
Time (mir	۱)	1	2	3	4	5		10	15	20	25	30	40	5	0	60
Water Lev (ft)	'el	18.6	15.5	13.7	12.4	11.	.5	10	10	10	10	10	10	1	0	10
After test of wel	l yield, w	ater wa	s	'	,		•					•				
Clear and sa	and free	Otl	ner (spec	ify)												
Pump intake se	t at Pun	nping ra	ite	Duration	n of pum	ping	I		Final w	ater leve	I end of	pumping	g C	Disinfe	cted	? *
35	(ft) 10		(GPM)	1	hrs +	- 00	0	min	min 23.6 (ft) ✓ Yes ☐ No] No		
Recommended	pump de	epth	Recomi	mended	pump ra	ate	Well	produc	ction							
35		(ft)	10		(GP	M)	10			(GPM)						
13. Map of W	ell Loca	tion *														

2193E (2020/01) Page 6 of 7

Make map area bigger

Map 1. Please Click the map area below to import an image file to use as the map.

14. Information	on							
Well owner's in ✓ Yes No	formation packaç	ge delive	ered	Date Package Delivered (y 2023/10/03	/yyy/r	mm/dd)	Date Work Con 2023/10/12	npleted (yyyy/mm/dd) *
K-packer and	ides @ 6' & 16 leader pipe abo e with pressure	ove scr	een					
15. Well Cont	ractor and We	ell Tech	nician	Information				
Business Name Herb Lang We	e of Well Contracell Drilling Ltd.	tor *		Well Contractor's License Number * 7560				
Business Add	ress							
Unit Number	Street Number 4852		eet Nam ghway 7					
City/Town/Villag	ge *				Pro	vince		Postal Code * K0L 2W0
Business Telep 705-799-7088				Address gmail.com				
Last Name of V Foster	Vell Technician *			First Name of Well Technic Nick	cian *	•	Well Technic 3920	ian's License Number *
16. Declaration	on *							
✓ I hereby cor and accurat		e persor	n who co	nstructed the well and I her	eby c	confirm th	at the information	on on the form is correct
Last Name Foster			First Na Nick	ame		Email A	ddress rilling@gmail.c	com
Signature						Date Su	ıbmitted (yyyy/m	nm/dd)
Nick Fo	ster	J		signed by Nick Foster 023.10.25 06:23:49 -04'00'			2023/	/10/25
17. Ministry U	Jse Only							
Audit Number								

2193E (2020/01) Page 7 of 7

AXN9 ON2Y

Ontario Water Resources Act

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: WellRecordSubmission@ontario.ca

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone.

Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record - Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

2193E (2020/01) Page 2 of 7

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: https://helpx.adobe.com/acrobat/using/digital-ids.html

2193E (2020/01) Page 3 of 7

Well Record - Regulation 903 Ontario Water Resources Act

Notice of Collection of Personal Information

Well Depth *

General Colour

33

Most Common Material

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Optario. This form and the information contained on the form will be stored in the Ministry's

well record da	atabas er Serv	se and vice R	l made p Represer	oublicly ntative a	availabl at the W	e. Questio	ns aboเ	ut this collec	tion sho	ould be dir	ecte	d in the Ministry's d to the Water rio M9P 3V6, at
Fields marked	with ar	n aster	risk (*) ar	e mand	atory.							
									\[\lambda	Vell Tag N	umbє	er*
									A	377799		
Type *									_			
✓ Constructio	n	□ A	.bandonn	nent								
Measurement	record	ded in	*									
Metric		√ Ir	mperial									
1. Well Own	er's l	nforr	mation									
Last Name and	First I	Name,	, or Orga	nization	is manda	atory. *						
Last Name							First Na	ame				
Organization Hillstreet Dev	elopm	ents I	Ltd				Email A	Address				
Current Addre	ess						1					
Unit Number		Street I 524	Number		eet Name sebank l				City/Tov Pickerin	vn/Village ng		
Country Canada						vince ario			Postal Code L1W 2N5			ephone Number
2. Well Loca	ation											
Address of We	ell Loc	ation										
Unit Number	Stree 5868	et Num	nber *	Street I	Name * / Rd. 65				Tow Hop	nship oe		
Lot 27				Conces 5	ssion			County/Dist				
City/Town Osaca								Province Ontario				Postal Code
UTM Coordinate	tes Zo	one *	Easting	*	Northin	g *			Municip	al Plan and	du2 t	lot Number
NAD 83	1	17	705582	2	48756	40	Test I	UTM in Map				
Other	'	'			•				-			
3. Overburde	en and	d Bed	rock Ma	aterial *	•							

2193E (2020/01) Page 4 of 7

General Description

Depth From

Depth To

Other Materials

(ft)

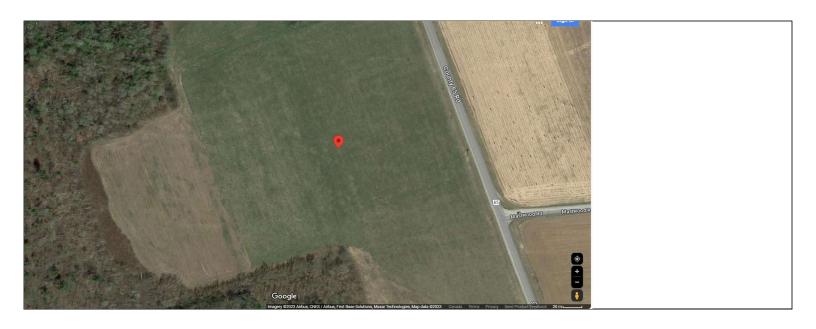
				(ft)	(ft)
Brown	Sand		Loose	0	18
Grey	Clay	Stones	Soft	18	25
Brown	Medium Sand		Loose	25	33

4. Annular Sp	pace *						
Depth From	Depth To	Ту	ype of Sealant Used (Ma	ateri	al and Type)	Volume	Placed
(ft)	(ft)					(cubic	c feet)
0	20		Bentonite Cl	hips		7	.0
0	20		Bentonite SI	urry	,	3	21
5. Method of	Construction	*					
✓ Cable Tool	Rotary (0	Conventional)	Rotary (Reverse)		Boring Air perc	ussion Di	amond
Jetting	Driving	Digging	Rotary (Air)		Augering Direct P	ush	
Other (spec	ify)						
6. Well Use *							
Public	Ind	ustrial	Cooling & Air Co	nditi	oning		
✓ Domestic	☐ Co	mmercial	Not Used				
Livestock	☐ Mu	nicipal	Monitoring				
Irrigation	Tes	st Hole	Dewatering				
Other (spec	ify)						
7. Status of V	Vell *						
✓ Water Supp	ly	Replaceme	ent Well	T	est Hole		
Recharge W	Vell	Dewatering	y Well	c	bservation and/or Moni	toring Hole	
Alteration (C	Construction)	Abandoned	d, Insufficient Supply	A	bandoned, Poor Water	Quality	
Abandoned,	, other (specify)						
Other (spec	ify)						
8. Constructi	on Record - C	asing * (use	e negative number(s) to	indi	cate depth above ground	d surface)	
Inside Diamete			al (Galvanized, Fibregla , Plastic, Steel)	ss,	Wall Thickness	Depth From	Depth To
(in)						(ft)	(ft)
6.25			Steel		0.188	-2	29

2193E (2020/01) Page 5 of 7

Steel

26


0.188

29

5.25

9. Constructi	on Reco	ord - S	creen											
Outside Diamete (in)			(Plast	Mate ic, Galva		iteel)		ı	Slot Number		Depth (f		· ·	th To ft)
5.5				Stainles	s Steel				14		2	9	3	3
40 Water Dat														
10. Water Det														
Water found at	Depth 33	<u> </u>	(ft) L	Gas	Kind of	water [Fres	h 🗸 U	Intested		ther			
11. Hole Dian	neter													
	epth Fror	m			Deptl	า To					 Diamete	r		
	(ft)				(ft						(in)			
	0				20						8.75			
	20				33	3					6.58			
12. Results o	f Well Y	ield Te	sting											
Pumping Dis														
Explain														
If flowing give ra	ate													
Flowing _					(0	SPM)								
Draw down				_							_			
Time (min)	Static Level	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)	9.5	13.5	14.3	14.8	15.1	15.2	15.7	15.7	15.7	15.7	15.7	15.7	15.7	15.7
Recovery							•						•	
Time (mir	۱)	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Lev (ft)	/el	11.6	10.5	9.7	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5
After test of wel	ll yield, w	ater wa	s											
✓ Clear and sa	and free	Oth	er (spec	ify)										
Pump intake se		nping ra	te	Duration	of pum	ping		Final wa	ater leve	I end of	pumping	g Dis	infected	? *
31	(ft) 10		` ′	1	hrs +			15.3			(ft)	✓	Yes [No
Recommended	pump de	-		nended _I			l produc		,					
31		(ft)	10		(GPI	M) 10			(GPM)					
13. Map of W														
Map 1. Please Cl	ick the ma	ap area b	elow to in	nport an i	mage file	to use a	s the ma	ıp.	☐ Mal	ke map a	area bigo	ger		

2193E (2020/01) Page 6 of 7

14. Information	on							
Well owner's in ✓ Yes No	formation packa	ge delive	ered	Date Package Delivered (y 2023/10/03	/yyy/mi		Date Work Con 2023/10/06	npleted (yyyy/mm/dd) *
K-packer and	ides @ 6' & 16 leader pipe ab se with pressure	ove scr	een			,		
15. Well Cont	tractor and We	ell Tech	nician	Information				
Business Name Herb Lang We	e of Well Contracell Drilling Ltd.	ctor *				Well Cor 7560	ntractor's Licens	se Number *
Business Add	ress				-			
Unit Number	Street Number 4852		eet Nam ghway 7					
City/Town/Villagonemee	ge *				Provii ON	nce		Postal Code * K0L 2W0
Business Telep 705-799-7088				Address gmail.com				
Last Name of V Foster	Vell Technician *			First Name of Well Technic Nick	cian *		Well Technic 3920	ian's License Number *
16. Declaration	on *							
✓ I hereby cor and accurat		e persor	n who co	nstructed the well and I her	eby co	nfirm th	at the information	on on the form is correct
Last Name Foster			First Na Nick	ame		Email Ad h <mark>lwelld</mark> r	ddress illing@gmail.c	om
Signature						Date Su	bmitted (yyyy/m	nm/dd)
Nick Fo	ster	J		v signed by Nick Foster 023.10.23 21:57:46 -04'00'			2023/	10/23
17. Ministry l	Jse Only							
Audit Number								

2193E (2020/01) Page 7 of 7

3H6V X9ZB

Ontario Water Resources Act

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: WellRecordSubmission@ontario.ca

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone.

Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record - Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

2193E (2020/01) Page 2 of 8

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: https://helpx.adobe.com/acrobat/using/digital-ids.html

2193E (2020/01) Page 3 of 8

Ontario Water Resources Act

Notice of Collection of Personal Information

General Colour

Most Common Material

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the *Ontario Water Resources Act* and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Well Custome 1-888-396-93		-		· ·	Desk, 1	25 Resource	es Road, Toronto	Ontario M9P 3V6, at
Fields marked	with an aste	erisk (*) ar	e mand	atory.				
							Well Tag N	Number *
							A 395881	
Type *								
✓ Constructio	n 🔲 ,	Abandonn	nent					
Measurement	recorded i	n: *						
Metric	✓ I	Imperial						
1. Well Own	er's Info	rmation						
Last Name and	l First Name	e, or Orga	nization	is mandatory. *				
Last Name					First N	Name		
Organization Hillstreet Deve	elpments l	_td.			Email	Address		
Current Addre	ess				•			
Unit Number	Street 524	t Number '		eet Name * sebank Rd.			City/Town/Village Pickering	
Country Canada	•			Province Ontario			Postal Code	Telephone Number
2. Well Loca	ation							
Address of We	ell Locatio	n						
Unit Number	Street Nui 5868	mber *	Street I Countr	Name * ry Rd. 65			Township Hope	
Lot 27			Conces 5	ssion			rict/Municipality //BERLAND	
City/Town Osaca						Province Ontario		Postal Code
UTM Coordinat	tes Zone *	Easting	*	Northing *		·!	Municipal Plan ar	nd Sublot Number
NAD 83	17	705633	3	4875621	Test	UTM in Map		
Other		,		,				
3. Overburde	n and Be	drock Ma	aterial [•]	*				
Well Depth *		78		(ft)				

2193E (2020/01) Page 4 of 8

General Description

Depth From

Depth To

Other Materials

				(ft)	(ft)
Brown	Topsoil	Sand	Soft		2
Brown	Sand		Soft	2	10
Brown	Clay	Sand	Soft	10	18
Brown	Medium Sand		Loose	18	37
Grey	Gravel	Sand	Dense	37	44
Grey	Clay		Packed	44	58
Grey	Clay	Sand	Packed	58	73
Grey	Coarse Gravel	Sand	Loose	73	78

4. Annular Sp	ace *				
Depth From	Depth To	Ту	pe of Sealant Used (Material and Type)	Volume Placed
(ft)	(ft)				(cubic feet)
0	20		Bentonite Chip	s - 100 lbs	1.4
			Bentonite Slur	ry - 50 gal	6.68
5. Method of (Construction *				
Cable Tool	Rotary (C	onventional)	Rotary (Reverse	e) Boring Air perd	cussion Diamond
 Jetting	 Driving	Digging	 ☐ Rotary (Air)	Augering Direct F	Push
✓ Other (speci	fy) <u>DR-12W</u>				
6. Well Use *					
Public	☐ Indu	ıstrial	Cooling & Air (Conditioning	
✓ Domestic	Con	nmercial	■ Not Used		
Livestock	☐ Mur	icipal	Monitoring		
Irrigation	Tes	t Hole	Dewatering		
Other (speci	fy)				
7. Status of W	Vell *				
✓ Water Suppl	ly	Replaceme	nt Well	Test Hole	
Recharge W	/ell	Dewatering	Well	Observation and/or Mon	itoring Hole
Alteration (C	construction)	Abandoned	I, Insufficient Supply	Abandoned, Poor Water	Quality
Abandoned,	other (specify)				

2193E (2020/01) Page 5 of 8

Other (specify)

Inside		Open H		/laterial (eglass,		Wall		Depth	From	Dept	:h To
Diamete (in)	r		Cor	icrete, Pla	astic, St	eel)		l I	hicknes	S	(f		(f	
6.25				Ste	el				0.188		-,		7	
5.25				Ste					0.188		7		7	
5.25				316	:ei				0.100		/	<u> </u>	/	4
9. Constructi	on Reco	ord - Sc	reen											
Outside			(DI	Mate		5 (1)			Slot			_		
Diamete (in)	r		(Plas	tic, Galva	ınızed, S	Steel)			Number		Depth (f		Dept (f	
5.5				Stainles	s Steel				35		7		7	
10. Water De	tails													
Water found at	Depth 78	3	(ft)	Gas	Kind of	water [Fres	h ✓ l	Jntested	_ O	ther			
11. Hole Dian	neter													
	epth Fron	n			Dept	h To		T			 Diamete	r		
	(ft)				(f						(in)			
	0				2						11.5			
	20				7	 8					7.5			
12. Results o	f Well Y	ield Te	sting											
Pumping Dis	scontinue	ed												
If flowing give ra	ate													
Flowing					(GPM)								
Draw down														
Time (min)	Static Level	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)	33.8	34.3	34.4	34.4	34.4	34.4	34.4	34.5	34.6	34.6	34.6	34.6	34.6	34.6
	•			•		· -	·	•	•	•	·		•	•
Recovery	₁₎ [1	2	3	4	5	10	15	20	25	30	40	50	60
Recovery Time (mir	'				00.0	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8
· · · · · · · · · · · · · · · · · · ·		33.8	33.8	33.8	33.8				I				l	
Time (mir Water Lev (ft)	rel			33.8	33.8									
Time (min Water Lev (ft) After test of wel	rel Il yield, wand free	ater was	er (spec	cify)										
Water Lev (ft) After test of we	rel Il yield, wand free	ater was Oth	er (spec			ping		Final wa	ater leve	l end of	pumping (ft)		infected	

2193E (2020/01) Page 6 of 8

Recommended pump depth

Recommended pump rate

Well production

68

14. Information

and accurate.

Ken Guthrie

Last Name Guthrie

Signature

30

(GPM)

(GPM)

13. Map of Well Location *

Map 1. Please Click the map area below to import an image file to use as the map.

(ft) 20

Well owner's in ✓ Yes No	formation packaç	ge delivered	Date Package Delivered (y 2024/07/26	yyy/n	nm/dd)	Date Work Con 2024/08/08	npleted (yyyy/mm/dd) *
Comments Sand was loos	se with pressure	e					
K-packer and	leader pipe abo	ove screen					
15. Well Cont	ractor and We	II Technician	Information				
Business Name Herb Lang We	e of Well Contracell Drilling Ltd.	tor *			Well Co 7560	ntractor's Licens	se Number *
Business Add	ress						
Unit Number	Street Number 4852	Street Nam Highway 7					
City/Town/Villagonemee	ge *			Prov ON	vince		Postal Code * K0L 2W0
Business Telep 705-799-7088		Business Email hlwelldrilling@					
Last Name of V Guthrie	Vell Technician *		First Name of Well Technic Ken	ian *		Well Technic 4198	ian's License Number *
16. Declaration	on *						

Digitally signed by Ken Guthrie

Date: 2024.08.13 13:50:19 -04'00'

✓ I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct

Email Address

hlwelldrilling@gmail.com

Date Submitted (yyyy/mm/dd)

2024/08/13

First Name

Ken

17. Ministry Use Only

Audit Number

A5H9 IELR

2193E (2020/01) Page 8 of 8

Ontario Water Resources Act

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: WellRecordSubmission@ontario.ca

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone.

Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record - Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

2193E (2020/01) Page 2 of 8

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: https://helpx.adobe.com/acrobat/using/digital-ids.html

2193E (2020/01) Page 3 of 8

Ontario Water Resources Act

Notice of Collection of Personal Information

Well Depth *

General Colour

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's

	r Service F	Represen	ıtative a	•					ed to the Water ario M9P 3V6, at
Fields marked	with an aste	erisk (*) are	e manda	ntory.					
							Well Tag		er *
_							A 39588	2	
Type *									
✓ Construction	n	Abandonm	nent						
Measurement	recorded in	n: *							
Metric	✓ I	mperial							
1. Well Own	er's Infor	mation							
Last Name and	First Name	e, or Orgar	nization	is mandatory. *					
Last Name					First N	lame			
Organization Hillstreet Deve	elopment L	.td.			Email	Address			
Current Addre	ss								
Unit Number	Street 524	Number *	II.	et Name * sebank Rd.			City/Town/Villag Pickering	je	
Country Canada	'		'	Province Ontario			Postal Code	Те	lephone Number
2. Well Loca	ition								
Address of We	ell Location) 1							
Unit Number	Street Nun 5868		Street N County	lame * Rd. 65			Township Hope		
Lot 247	l	I	Conces	sion			rict/Municipality MBERLAND		
City/Town Osaca						Province Ontario			Postal Code
UTM Coordinat	es Zone *	Easting *	•	Northing *			Municipal Plan	and Su	blot Number
NAD 83	17	705522	2	4875585	Test	UTM in Map			
Other	'	•		,					
3. Overburde	n and Bed	drock Ma	terial *						
Well Depth *		 159		(ft)					

2193E (2020/01) Page 4 of 8

General Description

Depth From

Depth To

Other Materials

(ft)

Most Common Material

				(ft)	(ft)
Brown	Topsoil	Sand	Soft		2
Brown	Medium Sand		Soft	2	7
Brown	Sand	Clay	Soft	7	14
Brown	Medium Sand	Gravel	Loose	14	40
Grey	Clay	Gravel	Packed	40	85
Grey	Fine Gravel	Sand	Loose	85	88
Grey	Clay	Gravel	Cemented	88	142
Grey	Shale	Gravel	Layered	142	143
Grey	Limestone		Hard	143	159

4. Annular Sp	ace *				
Depth From	Depth To	Ту	pe of Sealant Used (Material and Type)	Volume Placed
(ft)	(ft)				(cubic feet)
0	20		Bentonite Chip	s - 150 lbs	2.1
			Bentonite Slurr	y - 50 gals	6.68
5. Method of	Construction *	ķ			
Cable Tool	Rotary (C	onventional)	Rotary (Reverse) Boring Air pe	rcussion Diamond
Jetting	Driving	Digging	Rotary (Air)	Augering Direct	Push
✓ Other (speci	fy) <u>DR-12W</u>				
6. Well Use *					
Public	☐ Indu	ustrial	Cooling & Air (Conditioning	
✓ Domestic	Con	nmercial	■ Not Used		
Livestock	Mur	nicipal	Monitoring		
Irrigation	Tes	t Hole	Dewatering		
Other (speci	fy)				
7. Status of W	/ell *				
7. Otatus Of Vi		Replaceme	ent Well	Test Hole	
✓ Water Suppl	ly [
	_	Replacement Dewatering		Observation and/or Mo	nitoring Hole
✓ Water Suppl	/ell	Dewatering		☐ Observation and/or Mo☐ Abandoned, Poor Water	

2193E (2020/01) Page 5 of 8

Other (specify)

				Material (Galvanized, Fibreglass,					Wall			From	Dep	th To
(in)			Con	ncrete, Plastic, Steel)				Thickness			(1	t)	· (ft)
6.25				Steel				0.188				<u>, </u>	-	43
6				Open Hole								 43		 59
<u> </u>				Орентное							<u>.</u>		•	
9. Constructi	on Reco	ord - Sc	reen											
Outside			(Dlast	Material				Slot Number			Donath	Г.,	Dan	4b T-
Diamete (in)	r		(Plast	tic, Galvanized, Steel)					Nullibei			From t)	· ·	th To ft)
												-7	,	,
10. Water Det	taile													
Nater found at			(ft)	Gas	Kind of	water 「	Fresh	 n	 Jntested	O	ther			
Water found at Depth 156					Kind of		Fresh							
rator round at	20041110													
I1. Hole Dian	neter													
Depth From				Depth To				Diameter						
(ft)				(ft)				(in)						
0				20				11.5						
20				143				7.5						
143				159				6						
12. Results o	f Wall V	iold To	etina											
Pumping Dis			Sung											
Pumping Dis Explain	Sconlinue	:u												
If flowing give ra	ate													
Flowing					((GPM)								
 Draw down					<u> </u>									
Time (min)	Static Level	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)	37.5	43.1	45.8	48.2	50.3	52.3	61.3	69.2	75.7	80.4	85.5	93.1	99	103.6
Recovery		· 												
Time (mir	۱)	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level 102.6 97		07.0	95.5	93.5	91.4	81.8	75.6	65.2	60.4	55.6	48.3	43.2	40.1	

2193E (2020/01) Page 6 of 8

Pump intake set at Pumping rate		ite	Duratio	n of pumpin	g	Final wate	er level end of pumpi	ing	Disinfected? *		
158 (ft)	4	(GPM)	10	hrs +	min	108.4	(ft	t)	✓ Yes	☐ No	
Recommended pun	np depth	Recom	mended	pump rate	Well produc	tion					
150	(ft)	3		(GPM)	3	(G	PM)				
13. Map of Well L	ocation *										
Map 1. Please Click th	ne map area t	pelow to i	mport an	image file to	use as the ma	р	Make map area bi	igger			
							63 Mastwood				

14. Informat	ion						
	nformation packaç lo	ge delivered	Date Package Delivered (y 2023/10/23	/yyy/mm/dd)	nm/dd) Date Work Completed (yyyy/mm/dd) 3 2024/08/06		
Comments							
45 Mall Car	.44 \ \ \ \ \ \ \ \ \ \	II Taabalalaa	Info ati a				
	tractor and We		Information				
	e of Well Contrac ell Drilling Ltd.	tor *	7560		ontractor's License Number *		
Business Add	dress						
Unit Number	Street Number 4852	Street Nam Highway 7					
City/Town/Villa Omemee	age *	'		Province ON		Postal Code * K0L 2W0	
Business Tele 705-799-708	phone Number 8	Business Email hlwelldrilling@					
	Well Technician *		First Name of Well Technic	cian *	Well Technic	cian's License Number	

2193E (2020/01) Page 7 of 8

First Name

Ken

Last Name

Guthrie

Email Address hlwelldrilling@gmail.com Signature

Ken Guthrie

Digitally signed by Ken Guthrie Date: 2024.08.13 14:03:28 -04'00'

Date Submitted (yyyy/mm/dd) 2024/08/13

17. Ministry Use Only

Audit Number

22CI ZWJK

2193E (2020/01) Page 8 of 8

Ontario Water Resources Act

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: WellRecordSubmission@ontario.ca

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone.

Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record - Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

2193E (2020/01) Page 2 of 8

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: https://helpx.adobe.com/acrobat/using/digital-ids.html

2193E (2020/01) Page 3 of 8

Well Record - Regulation 903

Ontario Water Resources Act

Notice of Collection of Personal Information

General Colour

Most Common Material

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the *Ontario Water Resources Act* and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

	r Service F	Represen	tative a	t the Wells Hel				etion should be des es Road, Toront		ed to the Water ario M9P 3V6, at
Fields marked	with an aste	risk (*) are	e manda	tory.						
								Well Tag	Numb	er *
								A 39588	3	
Type *										
✓ Constructio	n	Abandonm	ent							
Measurement	recorded in	n: *								
Metric	✓ I	mperial								
1. Well Own	er's Infor	mation								
Last Name and	First Name	, or Orgar	nization i	s mandatory. *						
Last Name						First Na	ime			
Organization Hillstreet Deve	elopment L	.td.			i	Email A	ddress			
Current Addre	ess									
Unit Number	Street 524	Number *	I	et Name * ebank Rd				City/Town/Village Pickering	е	
Country Canada	'		!	Province Ontario				Postal Code	Те	lephone Number
2. Well Loca	ition									
Address of We	ell Location	<u> </u>								
Unit Number	Street Nun 5868		Street N County					Township Hope		
Lot 27	1		Concess 5	sion				rict/Municipality //BERLAND		
City/Town Osaca							Province Ontario			Postal Code
UTM Coordinat	tes Zone *	Easting *		Northing *				Municipal Plan a	and Su	blot Number
NAD 83	17	705553		4875651		Test L	JTM in Map			
Other										
3. Overburde	n and Bed	Irock Ma	terial *							
Well Depth *	1	159		(ft)						

2193E (2020/01) Page 4 of 8

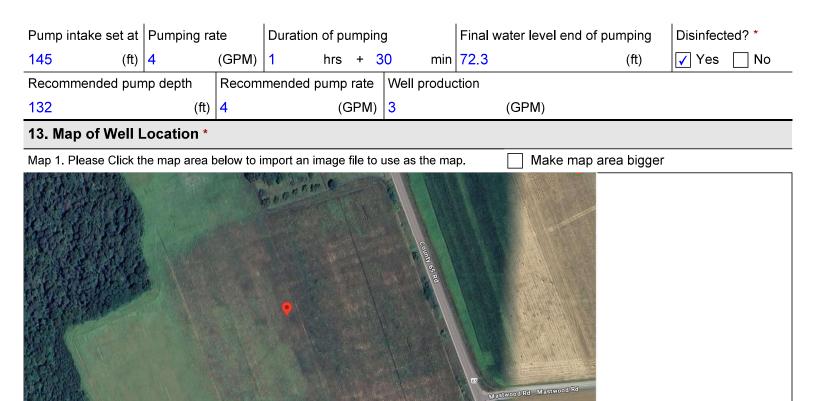
General Description

Depth From

Depth To

Other Materials

				(ft)	(ft)			
Brown	Topso	oil Sand	Soft		2			
Brown	Medium	Sand	Soft	2	7			
Brown	Sand	t	Packed	7	17			
Brown	Sand	d Gravel	Loose	17	40			
Grey	Clay	Sand	Packed	40	72			
Grey	Grav	el Sand	Packed	72	90			
Grey	Clay	Gravel	Dense	90	141			
Grey	Shal	e Gravel	Layered	141	142			
Grey	Limesto	one	Hard	142	159			
	•		·					
nnular Sp	ace *							
pth From	Depth To Type of Sealant Used (Material and Type) Volume Placed							


4. Annular Sp	ace *				
Depth From	Depth To	Ту	pe of Sealant Used (I	Material and Type)	Volume Placed
(ft)	(ft)				(cubic feet)
0	20		Bentonite Chips	s - 100 lbs	1.4
			Bentonite Slurr	y - 60 gals	8
5. Method of	Construction '	*			
Cable Tool	Rotary (C	onventional)	Rotary (Reverse) Boring Air percu	ussion Diamond
Jetting	Driving	Digging	Rotary (Air)	Augering Direct P	ush
✓ Other (speci	ify) DR-12W				
6. Well Use *					
Public	Indu	ıstrial	Cooling & Air C	Conditioning	
✓ Domestic	Con	nmercial	Not Used		
Livestock	Mur	nicipal	Monitoring		
Irrigation	Tes	t Hole	Dewatering		
Other (speci	ify)				
7. Status of W	Vell *				
✓ Water Suppl	ly [Replaceme	nt Well	Test Hole	
Recharge W	/ell	Dewatering	Well	Observation and/or Monit	oring Hole
Alteration (C	Construction)	Abandoned	l, Insufficient Supply	Abandoned, Poor Water	Quality
Abandoned,	other (specify)				

2193E (2020/01) Page 5 of 8

Other (specify)

Inside		Open H	ole or M				eglass,	-	Wall		Depth	From	Dep	th To					
Diamete (in)	r		Cond	crete, Pl	astic, St	eeı)		1	hicknes	S	(f		-	ft)					
6.25				Ste	 el				0.188			2		41					
5.25				Ste					0.188			2 35		38					
											142 148								
5.25				Ste	eı			0.188 142 148											
9. Constructi	on Reco	ord - Sc	reen																
Outside				Mate				Slot											
Diamete (in)	r		(Plast	c, Galva	nized, S	Steel)			Number		-	From t)		th To ft)					
5.25									18			38		42					
10. Water Det	tails																		
Water found at	Depth 14	2	(ft)	Gas	Kind of	water [Fresl	h 🗸 L	Intested	O	ther								
11. Hole Dian	neter																		
De	epth Fron	n			Dept	h To					Diamete	r							
	(ft)				(fi	t)					(in)								
	0				20	0			11.56										
	20				14	2					7.5								
	142				15	59					6								
40.5.1																			
12. Results o			sting																
Pumping Dis	scontinue	d																	
Explain																			
If flowing give ra	ate				4.														
Flowing _					((GPM)													
Draw down	Static				<u> </u>			1	Τ	1			1						
Time (min)	Level	1	2	3	4	5	10	15	20	25	30	40	50	60					
Water Level (ft)	1 35 1 1 38 5 1 77 7 1 73 5 1 77 7 1 75 1 70						49	52.4	55.7	58.1	59.9	64.2	65.9	67.8					
Recovery																			
Time (mir	Time (min) 1 2 3 4 5 10						10	15	20	25	30	40	50	60					
	el e	69.8	68.9	66.8	65.4	63.8	57.7	53.9	51.1	48.4	45.7	43.7	42.2	40.9					
Water Lev (ft)		00.0	00.0		l	I	I	I	I	l	l	I							

2193E (2020/01) Page 6 of 8

	Mary .	Google	ery © 2024 Airbus, First Base Solutions, Maxar Technologies, Map data © 202	4 Canada Terms Privacy Send Produc	t Feedback 20 mL			
14. Information	on							
Well owner's in ✓ Yes N	formation packago	ge delivered	Date Package Deliver 2023/10/03	red (yyyy/mm/d	d) Date Work 2024/07/3	Completed (yyyy/mm/dd) * 1		
Salt was enco	ountered at 159	ft in the rock.	il pipe below screen We filled the hole in, e on back. Salt appe		e.			
15. Well Con	tractor and We	II Technician	Information					
Business Name Herb Lang We	e of Well Contracell Drilling Ltd.	tor *		Wel 756		icense Number *		
Business Add	ress			· · · · · · · · · · · · · · · · · · ·				
Unit Number	Street Number 4852	Street Nar Highway						
City/Town/Villa Omemee	ge *	·		Province ON		Postal Code * K0L 2W0		
Business Telep 705-799-7088		Business Ema						
Last Name of V Guthrie	Vell Technician *		First Name of Well Te	echnician *	Well Tec 4198	hnician's License Number *		
16. Declaration	on *							
✓ I hereby con and accurat		e person who c	onstructed the well and	I hereby confir	m that the infor	mation on the form is correct		
Last Name		Ema	Email Address					

2193E (2020/01) Page 7 of 8

Ken

Guthrie

hlwelldrilling@gmail.com

Signature

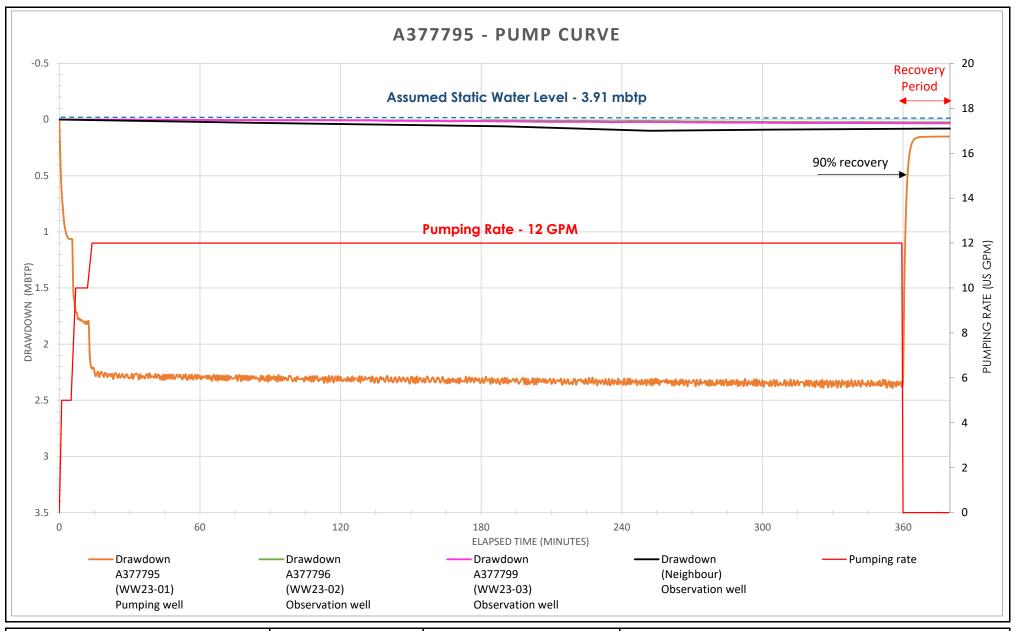
Ken Guthrie

Digitally signed by Ken Guthrie Date: 2024.08.15 12:15:23 -04'00'

Date Submitted (yyyy/mm/dd) 2024/08/15

17. Ministry Use Only

Audit Number


2AOU S3DP

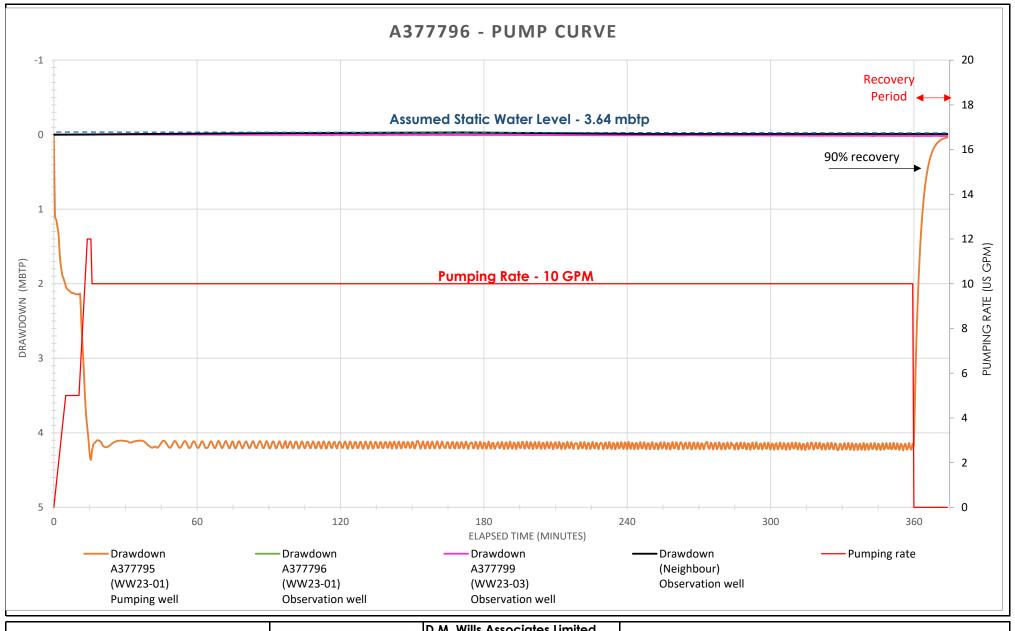
2193E (2020/01) Page 8 of 8

Appendix G

Pumping Test Hydrographs

A377795

Pumping Date: October 31, 2023 Pumping Initiation Time: 10:00 am



D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario Canada K9J 0B9

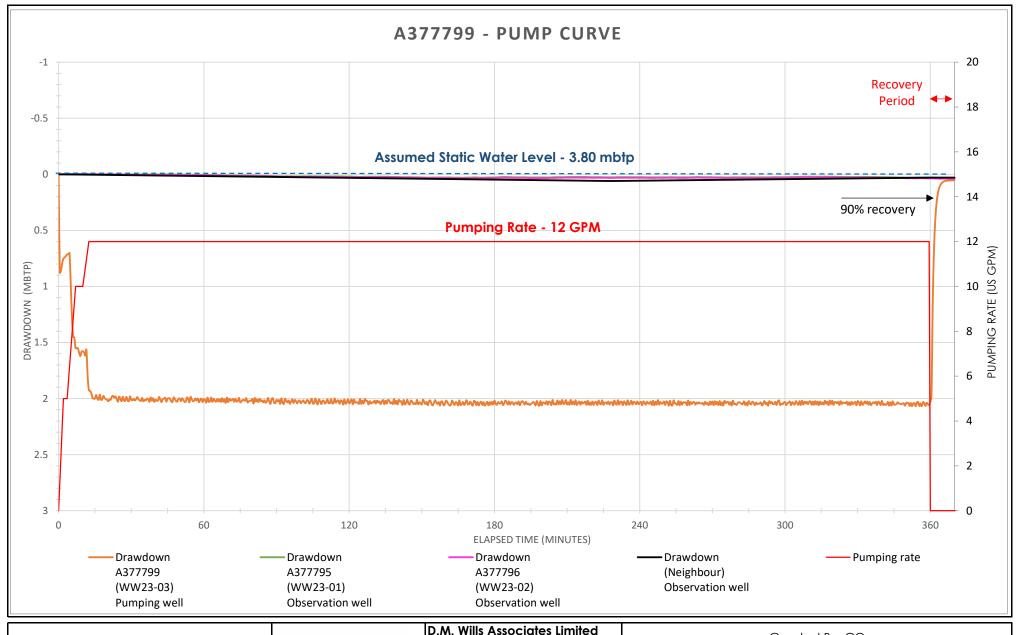
P. 705.742.2297 F. 705.748.9944

E. wills@dmwills.com

Created By: CO
Checked By: IA
Date: November 1, 2023
Project No.: 11056

A377796

Pumping Date: November 2nd, 2023 Pumping Initiation Time: 9:20 am



D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario Canada K9J 0B9

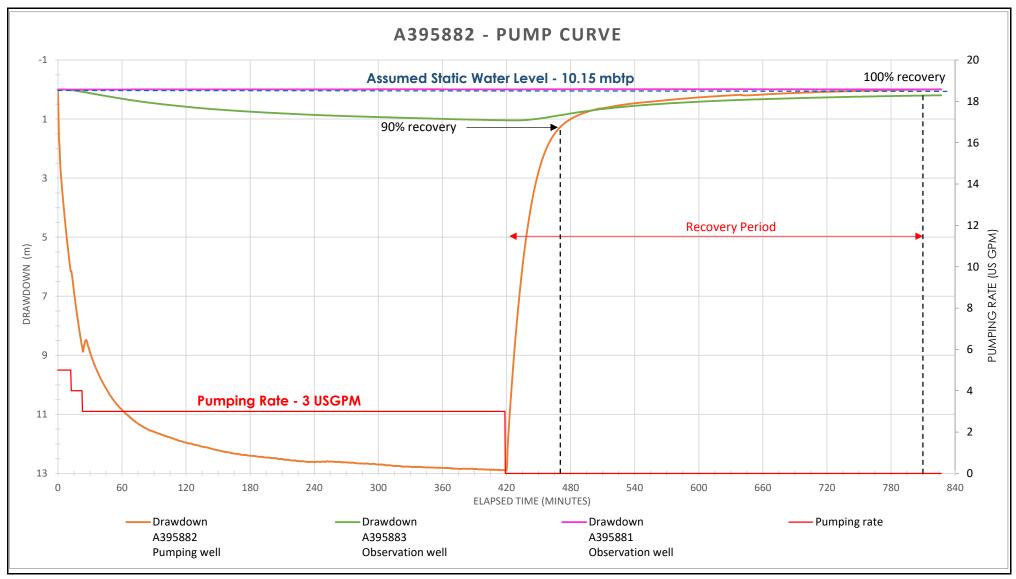
P. 705.742.2297 F. 705.748.9944

E. wills@dmwills.com

Created By: CO Checked By: IA Date: November 6, 2023

A377799

Pumping Date: November 8th, 2023
Pumping Initiation Time: 9:20 am



D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario Canada K9J 0B9

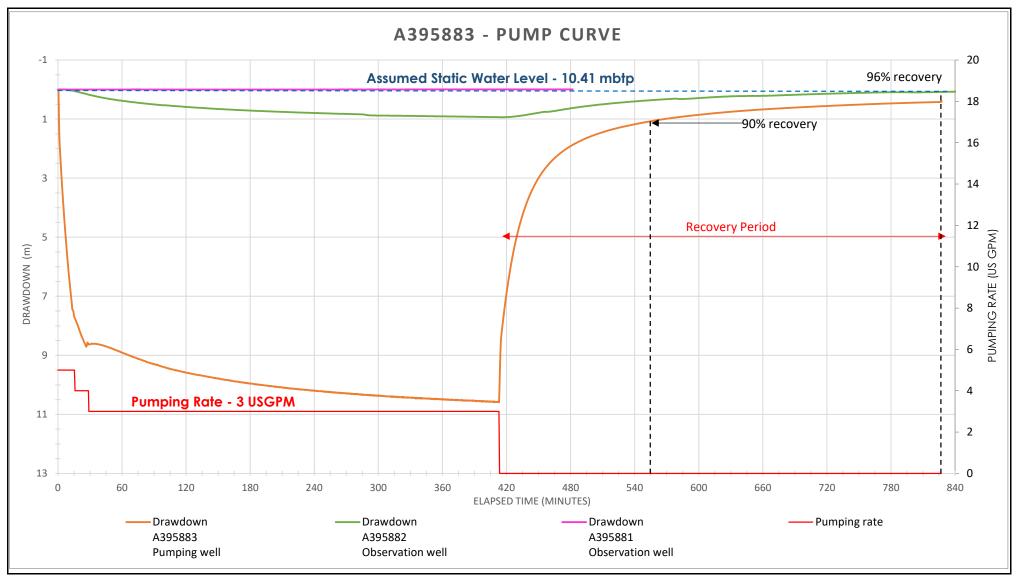
P. 705.742.2297 F. 705.748.9944 E. wills@dmwills.com Created By: CO

Checked By: IA

Date: November 10, 2023

A395882

Pumping Date: September 9, 2024 Pumping Initiation Time: 10:12 AM



D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario Canada K9J 0B9

P. 705.742.2297 F. 705.748.9944 E. wills@dmwills.com Created By: RB

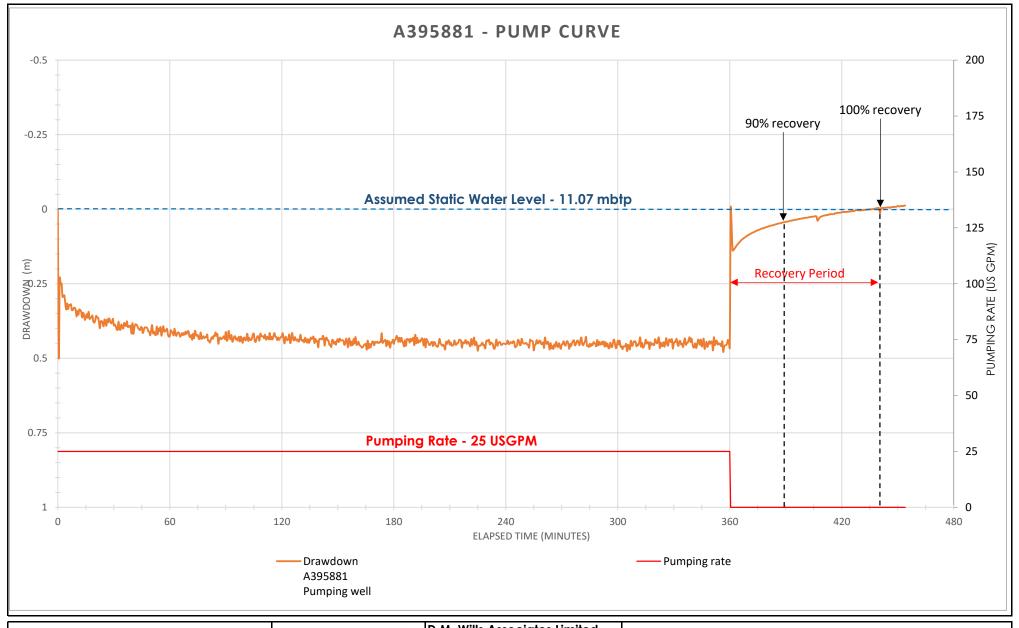
Checked By: IA

Date: September 20, 2024

A395883

Pumping Date: September 10, 2024 Pumping Initiation Time: 10:12 AM

D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario Canada K9J 0B9


P. 705.742.2297 F. 705.748.9944 E. wills@dmwills.com Date: September 20, 2

Project No.: 11056

Created By: RB

Checked By: IA

Date: September 20, 2024

A395881

Pumping Date: September 11, 2024 Pumping Initiation Time: 9:26 AM

D.M. Wills Associates Limited 150 Jameson Drive Peterborough, Ontario Canada K9J 0B9

P. 705.742.2297 F. 705.748.9944

E. wills@dmwills.com

Created By: RB

Checked By: IA

Date: September 23, 2024

Appendix H

Certificates of Analysis – Groundwater

CA12213-OCT22 R---

11056 - OSAC.A

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	.S
Client	D.M. Wills -Peterborough	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Lynsey Tuters	Telephone	705-652-2143
Telephone	289-385-6230	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	brad.moore@sgs.com
Email	ltuters@dmwills.com	SGS Reference	CA12213-OCT22
Project	11056 - OSAC.A	Received	10/05/2022
Order Number		Approved	10/18/2022
Samples	Ground Water (3)	Report Number	CA12213-OCT22 R
		Date Reported	10/18/2022

COMMENTS

Temperature of Sample upon Receipt: 20 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes Chain of Custody Number: 031488

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mod

1/8

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

Member of the SGS Group (SGS SA)

www.sgs.com

TABLE OF CONTENTS

First Page	1
ndex	
Results	
Exceedance Summary	
QC Summary	5-6
_egend	7
Annexes	8

Client: D.M. Wills -Peterborough

Project: 11056 - OSAC.A

Project Manager: Lynsey Tuters

Samplers: L. Tuters

MA	TRIX: WATER				Sample Number	5	6	7
					Sample Name	11056 - MW22 -	11056 - MW05 -	11056 - MW11 -
						08	Geotech3	Geotech 2
L1 =	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - F	Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water
					Sample Date	05/10/2022	05/10/2022	05/10/2022
	Parameter	Units	RL	L1		Result	Result	Result
	Parameter tals and Inorganics	Units	RL	L1		Result	Result	Result
Me		Units as N mg/L		L1		< 0.03	Result < 0.03	Result < 0.03
Me	tals and Inorganics			1 10				

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20221018 4 / 8

QC SUMMARY

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0214-OCT22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0214-OCT22	mg/L	0.03	<0.03	ND	20	93	90	110	95	75	125
Nitrate (as N)	DIO0214-OCT22	mg/L	0.06	<0.06	0	20	99	90	110	NV	75	125
Nitrate + Nitrite (as N)	DIO0229-OCT22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0229-OCT22	mg/L	0.03	<0.03	0	20	94	90	110	84	75	125
Nitrate (as N)	DIO0229-OCT22	mg/L	0.06	<0.06	0	20	100	90	110	96	75	125

20221018 5 / 8

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221018 6 / 8

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221018 7 / 8

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

No: 031488

Received By: Sindom Safkee Received Date: 001 05/2022 (mm/dd/ Received Time: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sh_	Received By Custody Sea Custody Sea	Present: Ye	Labo es No [es No [$\frac{2}{1}$			on Sec					×.	Type:	2	tca			in the second			2 A	122	213-0078
REPORT INFORMATION	IN	VOICE INFO	RMATION																					5000
Company: D. M. WILL	same as R	eport Informa	ation)		Quot	ation #							CIC OU NOVOU					P.O. #:	11	05	6			
Contact: Liters	Company:				Proje	ect #: \	165	76-	OS	AC	A	A.				. 70		Site Local						
Address: 150 Jameson Dr.	Contact:	- 19					/						Т	URNA	ROU	ND TIM	IE (TA	T) REQU	RED					
Veter horaush	Address:					UR	egular	TAT (5	-7day	/s)		, I	000000940	gradeny trouver										y holidays & weekends). egins next business day
Phone: 289-385-6230				- 19	RUS	н тат	(Addit	ional C	Charg	es Ma	v App	lv):		□1	Dav	□21		3 Days				weeken	15. IAI D	egins next business day
Fax:	Phone:				1												24 -	OR TO SU						
Email: Hutersedmuilk.com	Email: 🔐 (Q	untsed	mwill	S. com	Spec	ify Due	Date:					_	*NO	TE: DI	RINKIN	NG (PO	(%)	WATER S SGS DRIN						ON MUST BE SUBMITTED
REGI	JLATIONS							Ĭ.			Α		100000000000000000000000000000000000000	SIS F	REQ	UES	TED)						1991
O.Reg 153/04 O.Reg 406/19	Other Regula	tions:	Sewe	er By-Law:		M	& I	M	SV	OC	РСВ	PI	-IC	V	С	Pest	Ť	Other	(please	specify)		SPLP	TCLP	
□ Table 1 □ Res/Park Soil Texture: □ Table 2 □ Ind/Com □ Coarse □ Table 3 □ Agri/Other □ Medium/Fine □ Table		MMER Other:	Mur	Sanitary Storm	(ics ;,SAR-soil)	Hg, CrVI	As,Ba,Be,B,Cd,			Aroclor										on Pkg	Specify tests	tests	
RECORD OF SITE CONDITION (RSC)	YES	NO			(N/N)	yan /S),EC	ite ii only)	Sb,								other		-	1		zatio nded	□voc	□voc	COMMENTS:
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered (Metals & Inorganics incl CVVI, CN,Hg pH,(B(HWS),EC,SAR (CI, Na-water)	Full Metals Suite	ICP Metals only Sb,As Cr,Co,Cu,Pb,Mo,Ni,Se,Ag,TI,U,V,Zn	PAHs only	SVOCs all incl PAHs, ABNs, CPs	PCBs Total	F1-F4 + BTEX	F1-F4 only no BTEX	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or specify	Nitrates			Sewer Use: Specify pkg:	Water Characterization Pkg	□1,4- Dioxane □OCP □ABN	□PCB □B(a)P □ABN □Ignit.	
1 11056 - MW22-08	OCt 5/22	AM	1	610	Merida												V							Min to street
2 11056-MW05-Geofech3		AM	1	00	100			-81									V						10.4	7,2
3 1/056-MWII-GROTED Z	oct 5/22		1						8					8.			1		+					
4	0015/22	(11-1		aw	N. Press.		-							7							\vdash			. 1
5					-0.5			5,1			-			-			\$4.	-	-	-				
	-	-	F. 1		- 34	7.00		24			A			-				- 1	-		-			
6		-9	100			137		84 Y									1		_					*
7						7-00					1						9							
8				64	100			Mil.																1
9		4	1 01					## ·						elt.			40			35 35				
10		100		- d 2 (19)	1918			6.7 F	1.18									7						
11		1		-		7.58		4					_				8							The state of the s
12					0. 11 7	115169	·	100				L		-					-	-		1		
Observations/Comments/Special Instructions		No.	<u> </u>	100	T		e"	*											L				6.60	
		- 60	1	(1			5			- 197		and the										
Sampled By (NAME): L TURES	φ.	West,	Signature:	Flet	M	jer -		1		j		54/10	- 44		Date:	3(A	10	512	022	- (m	nm/dd/y	y)	i.	Pink Copy - Client
Relinquished by (NAME): U-TUPY Revision #: 1.6 Note: Submission of samples to SGS	ia aaleaauda deeeeee		Signature:	97	ite	no	A)			-1 15					Date:		105	5/20			nm/dd/y			Yellow & White Copy - SG
Revision #: 1.6 Note: Submission of samples to SGS Date of Issue: 02 May 2022 the contract, or in an alternat	is acknowledgement th	at you have been	Pesults may b	uon on sample de	nection/l	nandling a	and tran	sportation	or sam	ipies. (2	al cost	Fay is a	sample	e unon r	o IS CON	This do	authoriza	tion for comp	netion of	work.	Signatur	es may a	ppear on the	is form or be retained on file in

et Submission of samples to SGS is acknowledgement that you have been provided direction on stample delection/handling and transportation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on for the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA14187-DEC23 R

11056

Prepared for

D.M. Wills -Peterborough

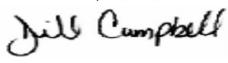
First Page

CLIENT DETAILS	s	LABORATORY DETAIL	.s
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14187-DEC23
Project	11056	Received	12/06/2023
Order Number		Approved	12/11/2023
Samples	Ground Water (3)	Report Number	CA14187-DEC23 R
		Date Reported	12/11/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline


MDL - SGS Method Detection Limit

Temperature of Sample upon Receipt: 4 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes Chain of Custody Number: 036540

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4
Exceedance Summary	5
QC Summary	6
Legend	7
Annexes	8

CA14187-DEC23 R

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

Samplers: Chris Ostic

MATRIX: WATER				Sample Number	8	9	10
				Sample Name	BH101-22	BH107-22	BH110-22
L1 = ODWS_MAC / WATER	t / Table 1,2 and 3 - Drinking Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water
				Sample Date	05/12/2023	05/12/2023	05/12/2023
Parameter	Units	RL	L1		Result	Result	Result
Metals and Inorga	nics						
Nitrite (as N)	as N mg/L	0.003	1		0.003# <mdl< td=""><td>0.003#<mdl< td=""><td>0.003#<mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.003# <mdl< td=""><td>0.003#<mdl< td=""></mdl<></td></mdl<>	0.003# <mdl< td=""></mdl<>
Nitrate (as N)	as N mg/L	0.006	10		8.84	0.188	2.72

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20231211 5 / 8

CA14187-DEC23 R

QC SUMMARY

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-IENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0149-DEC23	mg/L	0.006	<0.006	NA		NA			NA		
Nitrite (as N)	DIO0149-DEC23	mg/L	0.003	<0.003	ND	20	100	90	110	80	75	125
Nitrate (as N)	DIO0149-DEC23	mg/L	0.006	<0.006	1	20	99	90	110	103	75	125

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20231211 6 / 8

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20231211 7 / 8

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

Laboratory Information Section - Lab use only

No:036540

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Recei	ived By: Katelyn Muelland ived Date: 12/06/23 (mm/dd/) ived Time: 15:15 (hr: min)	yy)	Received By (Custody Seal Custody Seal	Present: Ye	s No E	1		Coolin	g Agent erature U	Prese	nt: Ye	es [No [4	Гуре:_		Co					LAB	LIMS#	CAIL	1187-Dec23	
	REPORT INFORMATION		VOICE INFO	See Control of the Co																						
Com	pany: DM WILLS	(same as Re	eport Informa	tion)		Quota	ation #:									line -		F	P.O. #:		110	56	6			
	act: RALF BOLVIN	Company:	- 10 5			Proje	ct #:		11	1\056 Site Location/ID:																
Addr	ess: 150 JAMESON DRIVE	Contact;								TURNAROUND TIME (TAT) REQUIRED																
P	PETERBOROUGH, ON 105-868-1691	Address:	(A)			OK-	Re	gular	TAT (5	AT (5-7days) TAT's are quoted in business of Samples received after 6pm or																
hon	705-868-1691	19124 1917				RUSI	H TAT (Addit	ional C	Charges May Apply): 1 Day 2 Days 3 Days 4 Days																
ax:		Phone:				1.				RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION								57		A						
Emai	rbolvin@dmwills.com	NEmail: ACCOL	untsea	lnwill	S. Com	Spec	ify Due	Date:	105	*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR H WITH SGS DRINKING WATER (
	REGU	JLATIONS								ANALYSIS REQUESTED																
	O.Reg 153/04 O.Reg 406/19	Other Regulat	tions:	Sewe	er By-Law:		M 8	8.1		SV	ОС	РСВ	Ph	IC	VC	C	Pest		Othe	l' (plea	se specit	y)	SPLI	TCLP		
	Table 1 Res/Park Soil Texture:	Reg 347/558		100	Sanitary														Specify	Specify						
-	Fable 2 ☐ Ind/Com ☐ Coarse Fable 3 ☐ Agri/Other ☐ Medium/Fine	PWQO [MMER Other:		Storm icipality:		W.		, po		opo									tests	tests					
	Table Appx.	MISA	Curier.		icipanty.		-soil)	Ş	,Be,B,		SVOC PCB PHC VOC Pest EX EX Ex Avocior other are a constant of the consta							- 13		- 1-6	okg.					
	Soil Volume	ODWS Not F	Reportable *Se	e note		_	ics SAR-	Hg, C	,As,Ba Zn			4					L	S			1	noi	■ Woc	Is M&I	COMMENTS:	
	RECORD OF SITE CONDITION (RSC)	YES	NO] X	gan NS),E(Jite oil only	ly Sb TI,U,V,								fy othe	12			100	rizat		SERVICE	COMMENTO.	
						ed (nor 1.(B(H)	S SI	ICP Metals only		, CPs	Total	TEX				speci	F				Characterization Pkg	1,4- Dioxar	Day		
	SAMPLE IDENTIFICATION	DATE	TIME	# OF	MATRIX	Filtered	og H.Hg p	etal	tals.	only	, ABNs		4	only	×	yluc	ides	ITZ		1	Use:	har	□ OCP			
	SAMPLE IDENTIFICATION	SAMPLED	SAMPLED	BOTTLES	WATRIA	H P	tals	I Metals p	Me, Cu,Pb	Hs	OCS	Bs	F4	EX X	CS	EX	stici	2	C. A		ver L	ter C	ABN	□ Ignit.		
						Field	Metals & Inorganics inc GVI, CN,Hg pH,(B(HWS),EC,SAR-s (Cf, Na-water)	Ful ICP m	C,C	PA	SV(PC	F1-	F1-	Sall inc	BT	Pes Organ				Sew	Water General	3		Programme State of the State of	
1	BH101-22 BH107-22 BH110-22	DEC 5/23	AM	2	GW	N						N 2						X				4	134			
2	BH107-22	1	50.1			N,			10.4									X								
3	BU 110 - 27	20	3/	1	V	N		7 (3)							- 73	34		X	1	-						
4	DRI 110 CC	Miller Star Ville All 1	- V	7					9.85											+	1		15.5	1	TABLE TO THE RESERVE	
-				1.1	- A - W											1.		1.00		+	+	- East			32	
2						100 000														+		A 15	312			
6							1 38		7						20	-		-	-	<u> </u>	en for	W	-			
7		TEE	- 10	- 12 100			(40)					- 65			-								+-			
8	10 to							43														100	-		Sympton and the second	
9																			(C) AR	2			_			
10			Charles To San T																							
11			P	\$6. E																	TR.					
12				31000			-10		1			V (1)							7 17 3						1	
Obse	rvations/Comments/Special Instructions	man and the			0	-	2 0	THE	1																	
Samr	oled By (NAME): CHOLS (NST(C)		State of the state	Signature:	OVIA	2 6	Just .	0		1					10	Data	17	. 0	5.	22	·	(mm/do	1/10/1	M V	Pink Copy - Client	
-	equished by (NAME): CLOS DSTIC			Signature:	No.	7	OLL	1				7	- 452	1	1856	Date:	12	- 10	5	72	,	(mm/dc			Yellow & White Copy - SGS	
Revision		is acknowledgement th	at you have beer	provided direc	tion on sample c	olleotion/	handling a	and tran	sportation	n of san	nples. {2	2} Submis	ssion of	sample	s to SG	S is co	nsidered	authoriza	ation for c	ompleti	on of wor	. Signa	tures may	appear on	this form or be retained on file in	

CA19813-OCT23 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAIL	.S	LABORATORY DETAIL	LS
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA19813-OCT23
Project	11056	Received	10/31/2023
Order Number		Approved	11/07/2023
Samples	Ground Water (2)	Report Number	CA19813-OCT23 R1
		Date Reported	11/07/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 5 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 037594

Phenol Spk low due to sample matrix

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

irst Page	1-2
ndex	3
Results	4-7
Exceedance Summary	8
QC Summary	9-19
egend	20
Annexes.	21

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

Samplers: Chris Ostic

MATRIX: WATER			s	ample Number	7	8
				Sample Name	11056 Well	11056 Well
					A377795_1 hr	A377795_6 hr
1 = ODWS_AO_OG / WATER / Table 4 - Drink	king Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 -	Drinking Water - Reg O.169_03			Sample Date	31/10/2023	31/10/2023
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry						
UV Transmittance	%T				94.3	93.4
Alkalinity	mg/L as CaCO3	2	500		221	213
Bicarbonate	mg/L as CaCO3	2			221	213
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		< 3	3
Conductivity	uS/cm	2			480	479
Total Suspended Solids	mg/L	2			< 2	< 2
Turbidity	NTU	0.10	5	1	1.9	3.1
Organic Nitrogen	mg/L	0.05	0.15		0.76	0.50
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.77	0.51
Ammonia+Ammonium (N)	as N mg/L	0.04			< 0.04	< 0.04
Dissolved Organic Carbon	mg/L	1	5		1	1
Total Organic Carbon	mg/L	1			1	1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

		;	Sample Number	7	8
			Sample Name	11056 Well	11056 Well
				A377795_1 hr	A377795_6 hr
Water - Reg O.169_03			•		Ground Water
king Water - Reg O.169_03			•		31/10/2023
Units	RL	L1	L2	Result	Result
mg/L	0.06		1.5	< 0.06	< 0.06
mg/L	0.3			< 0.3	< 0.3
as N mg/L	0.03		1	< 0.03	< 0.03
as N mg/L	0.06		10	5.16	6.21
mg/L	2	500		11	13
mg/L	0.02			< 0.02	< 0.02
mg/L as CaCO3	0.05	100		244	239
mg/L	0.001	0.1		0.007	0.003
mg/L	0.0002		0.01	< 0.0002	< 0.0002
mg/L	0.002		5	0.010	0.012
mg/L	0.00008		1	0.00821	0.00903
mg/L	0.000007			< 0.000007	< 0.000007
mg/L	0.00001			< 0.00001	< 0.00001
mg/L	0.000004			0.000135	0.000073
mg/L	0.01			90.8	88.8
mg/L	0.000003		0.005	< 0.000003	< 0.000003
mg/L	0.0002	1		0.0021	0.0019
mg/L	0.00008		0.05	0.00029	0.00027
mg/L	0.007	0.3		0.124	0.032
mg/L	0.009			0.442	0.469
mg/L	0.001			4.06	4.16
	mg/L mg/L mg/L as N mg/L as N mg/L mg/L mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 0.006 mg/L 0.03 as N mg/L 0.06 mg/L 0.03 as N mg/L 0.06 mg/L 2 mg/L 0.02 mg/L 0.001 mg/L 0.001 mg/L 0.0002 mg/L 0.0002 mg/L 0.00008 mg/L 0.000001 mg/L 0.000001 mg/L 0.000003 mg/L 0.00008 mg/L 0.00008 mg/L 0.000003 mg/L 0.00008 mg/L 0.00008 mg/L 0.000003 mg/L 0.00008	Vater - Reg O.169_03 Vinits RL L1 mg/L 0.06 mg/L 0.3 as N mg/L 0.06 mg/L 0.06 mg/L 0.006 mg/L 0.02 mg/L 0.001 mg/L 0.001 0.1 mg/L 0.0002 mg/L 0.002 mg/L 0.0002 mg/L 0.00008 mg/L 0.000001 mg/L 0.000001 mg/L 0.000001 mg/L 0.000003 mg/L 0.00008 mg/L 0.000003 mg/L 0.00008 mg/L 0.000008 mg/L 0.000003 mg/L 0.00008 mg/L 0.000003 mg/L 0.00008 mg/L 0.000008 mg/L 0.000008 mg/L 0.000003 mg/L 0.000008 mg/L 0.000008	Nater - Reg O.169_03 Sample Matrix	Nater - Reg 0.169_03 Sample Matrix Sample Date A377795_1 hr

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

					_	
ATRIX: WATER			;	Sample Number	7	8
				Sample Name	11056 Well	11056 Well
ODWO AO OO (WATER / Table A Disting W	/stan Day 0 400 00			Sample Matrix	A377795_1 hr Ground Water	A377795_6 hr Ground Water
ODWS_AO_OG / WATER / Table 4 - Drinking WODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	-			Sample Date	31/10/2023	31/10/2023
Parameter	Units	RL	L1	L2	Result	Result
etals and Inorganics (continued)						
Manganese (total)	mg/L	0.00001	0.05		0.00666	0.00284
Molybdenum (total)	mg/L	0.00004			0.00036	0.00059
Nickel (total)	mg/L	0.0001			0.0006	0.0004
Sodium (total)	mg/L	0.01	200	20	2.63	2.56
Phosphorus (total)	mg/L	0.003			< 0.003	< 0.003
Lead (total)	mg/L	0.00009		0.01	< 0.00009	< 0.00009
Silicon (total)	mg/L	0.02			3.69	3.66
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			0.155	0.155
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			0.00011	0.00021
Titanium (total)	mg/L	0.00007			0.00026	0.00010
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	0.00004	0.00012
Uranium (total)	mg/L	0.000002		0.02	0.000264	0.000281
Vanadium (total)	mg/L	0.00001			0.00023	0.00020
Zinc (total)	mg/L	0.002	5		0.003	0.002
Cation sum	meq/L	-9999			5.00	4.90
Anion Sum	meq/L	-9999			5.00	4.88
Anion-Cation Balance	% difference	-9999			0.06	0.24
Ion Ratio	none	-9999			1.00	1.00

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

		S	Sample Number	7	8
			Sample Name	11056 Well	11056 Well
				A377795_1 hr	A377795_6 hr
- Reg O.169_03			Sample Matrix	Ground Water	Ground Water
Vater - Reg O.169_03			Sample Date	31/10/2023	31/10/2023
Units	RL	L1	L2	Result	Result
mg/L	-9999			257	252
uS/cm	-9999			500	489
@ 4° C	-9999			0.14	0.09
pHs @ 4°C	-9999			7.65	7.67
cfu/100mL	0		0	0	1
cfu/100mL	0		0	0	0
cfu/1mL	0			740	117
No unit	0.05	8.5		7.79	7.76
mg/L	1	250		9	9
mg/L	0.00001			< 0.00001	< 0.00001
mg/L	0.002			< 0.002	< 0.002
	rater - Reg O.169_03 Units mg/L uS/cm @ 4° C pHs @ 4°C cfu/100mL cfu/100mL cfu/17mL No unit mg/L mg/L	Mater - Reg O.169_03 Units RL mg/L -9999 uS/cm -9999 @ 4° C -9999 pHs @ 4° C -9999 cfu/100mL 0 cfu/100mL 0 cfu/1mL 0 No unit 0.05 mg/L 1 mg/L 0.00001	r. Reg O.169_03 reter - Reg O.169_03 Units RL L1 mg/L -9999 uS/cm -9999 uS/cm -9999 pHs @ 4° C -9999 cfu/100mL 0 cfu/100mL 0 cfu/10mL 0 retu/10mL 0 cfu/1mL 0 No unit 0.05 8.5 mg/L 1 250 mg/L 0.00001	Reg O.169_03 Sample Matrix Sample Date	Sample Name A377795_1 hr

EXCEEDANCE SUMMARY

				ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.169_03	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water -
Parameter	Method	Units	Result	L1	Reg O.169_03 L2
56 Well A377795_1 hr					
Organic Nitrogen		mg/L	0.76	0.15	
Turbidity	SM 2130	NTU	1.9		1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	244	100	
56 Well A377795_6 hr					
Organic Nitrogen		mg/L	0.50	0.15	
Total Coliform	OMOE MICROMFDC-E3407A	cfu/100mL	1		0
Turbidity	SM 2130	NTU	3.1		1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	239	100	

20231107 8 / 21

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0113-NOV23	mg/L as	2	< 2	1	20	96	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0040-NOV23	mg/L	0.04	<0.04	ND	10	100	90	110	93	75	125

20231107 9 / 21

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	Units RL Method		Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5006-NOV23	mg/L	1	<1	11	20	104	80	120	106	75	125
Sulphate	DIO5006-NOV23	mg/L	2	<2	ND	20	102	80	120	105	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bromide	DIO0147-NOV23	mg/L	0.3	<0.3	ND	20	103	90	110	99	75	125
Nitrite (as N)	DIO0147-NOV23	mg/L	0.03	<0.03	19	20	100	90	110	103	75	125
Nitrate (as N)	DIO0147-NOV23	mg/L	0.06	<0.06	0	20	99	90	110	84	75	125

20231107 10 / 21

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Dissolved Organic Carbon	SKA0038-NOV23	mg/L	1	<1	1	20	97	90	110	95	75	125	
Total Organic Carbon	SKA0038-NOV23	mg/L	1	<1	1	20	97	90	110	95	75	125	

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units RL Method		Method	Duplicate		LC	S/Spike Blank	Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits 6)	Spike Recovery	Recovery Limits (%)	
						(70)	(%)	Low	High	(%)	Low	High
Carbonate	EWL0113-NOV23	mg/L as	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0113-NOV23	mg/L as CaCO3	2	< 2	1	10	NA	90	110	NA		
ОН	EWL0113-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

20231107 11 / 21

QC SUMMARY

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0037-NOV23	TCU	3	< 3	0	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0113-NOV23	uS/cm	2	< 2	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Re	of.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0035-NOV23	mg/L	0.06	<0.06	ND	10	97	90	110	98	75	125
Fluoride	EWL0090-NOV23	mg/L	0.06	<0.06	0	10	96	90	110	96	75	125

20231107 12 / 21

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0005-NOV23	mg/L	0.00001	< 0.00001	13	20	101	80	120	100	70	130

20231107 13 / 21

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	-	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0028-NOV23	mg/L	0.00005	<0.00005	ND	20	102	90	110	73	70	130
Aluminum (total)	EMS0028-NOV23	mg/L	0.001	<0.001	9	20	100	90	110	90	70	130
Arsenic (total)	EMS0028-NOV23	mg/L	0.0002	<0.0002	6	20	97	90	110	100	70	130
Barium (total)	EMS0028-NOV23	mg/L	0.00008	<0.00008	2	20	97	90	110	96	70	130
Beryllium (total)	EMS0028-NOV23	mg/L	0.000007	<0.000007	ND	20	98	90	110	97	70	130
Boron (total)	EMS0028-NOV23	mg/L	0.002	<0.002	5	20	107	90	110	95	70	130
Bismuth (total)	EMS0028-NOV23	mg/L	0.00001	<0.00001	ND	20	91	90	110	97	70	130
Calcium (total)	EMS0028-NOV23	mg/L	0.01	<0.01	2	20	102	90	110	100	70	130
Cadmium (total)	EMS0028-NOV23	mg/L	0.000003	<0.000003	2	20	100	90	110	106	70	130
Cobalt (total)	EMS0028-NOV23	mg/L	0.000004	<0.000004	7	20	101	90	110	99	70	130
Chromium (total)	EMS0028-NOV23	mg/L	0.00008	<0.00008	15	20	101	90	110	85	70	130
Copper (total)	EMS0028-NOV23	mg/L	0.0002	<0.0002	3	20	98	90	110	81	70	130
Iron (total)	EMS0028-NOV23	mg/L	0.007	<0.007	4	20	97	90	110	100	70	130
Potassium (total)	EMS0028-NOV23	mg/L	0.009	<0.009	4	20	101	90	110	99	70	130
Magnesium (total)	EMS0028-NOV23	mg/L	0.001	<0.001	5	20	99	90	110	98	70	130
Manganese (total)	EMS0028-NOV23	mg/L	0.00001	<0.00001	3	20	98	90	110	97	70	130
Molybdenum (total)	EMS0028-NOV23	mg/L	0.00004	<0.00004	1	20	106	90	110	107	70	130
Sodium (total)	EMS0028-NOV23	mg/L	0.01	<0.01	4	20	97	90	110	95	70	130
Nickel (total)	EMS0028-NOV23	mg/L	0.0001	<0.0001	1	20	100	90	110	98	70	130
Lead (total)	EMS0028-NOV23	mg/L	0.00009	<0.00009	ND	20	99	90	110	76	70	130

20231107 14 / 21

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ry Limits 6)
						(76)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0028-NOV23	mg/L	0.003	<0.003	3	20	100	90	110	NV	70	130
Antimony (total)	EMS0028-NOV23	mg/L	0.0009	<0.0009	ND	20	109	90	110	106	70	130
Selenium (total)	EMS0028-NOV23	mg/L	0.00004	<0.00004	ND	20	98	90	110	99	70	130
Silicon (total)	EMS0028-NOV23	mg/L	0.02	<0.02	4	20	105	90	110	NV	70	130
Tin (total)	EMS0028-NOV23	mg/L	0.00006	<0.00006	3	20	106	90	110	NV	70	130
Strontium (total)	EMS0028-NOV23	mg/L	0.00008	<0.00008	4	20	101	90	110	100	70	130
Titanium (total)	EMS0028-NOV23	mg/L	0.00007	<0.00005	9	20	108	90	110	NV	70	130
Thallium (total)	EMS0028-NOV23	mg/L	0.000005	<0.000005	7	20	96	90	110	99	70	130
Uranium (total)	EMS0028-NOV23	mg/L	0.000002	<0.000002	1	20	99	90	110	102	70	130
Vanadium (total)	EMS0028-NOV23	mg/L	0.00001	<0.00001	8	20	97	90	110	96	70	130
Zinc (total)	EMS0028-NOV23	mg/L	0.002	<0.002	3	20	103	90	110	123	70	130

20231107 15 / 21

QC SUMMARY

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-IENVIMIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dupli	cate	LC	S/Spike Blank		Ma	atrix Spike / Ref	•
	Reference				AC	Spike		ery Limits %)	Spike Recovery	Recove	•	
					(%	(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9011-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE D							
Heterotrophic Plate Count (HPC)	BAC9011-NOV23	cfu/1mL	-	ACCEPTED	ACCEPTE D							
Total Coliform	BAC9011-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

	,== = =, =											
Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0113-NOV23	No unit	0.05	NA	0		100			NA		

20231107 16 / 21

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0023-NOV23	mg/L	0.002	<0.002	ND	10	100	80	120	60	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphide	SKA0030-NOV23	mg/L	0.02	<0.02	ND	20	94	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref: MF-CA-IENVIEWI -I AK-AN-004

Parameter Parameter	QC batch	Units	RL	Method	Du	plicate	LO	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0120-NOV23	mg/L	2	< 2	5	10	95	90	110	NA		

20231107 17 / 21

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0045-NOV23	mg/L	0.05	<0.05	5	10	101	90	110	89	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (M)	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0027-NOV23	NTU	0.10	< 0.10	0	10	100	90	110	NA		

20231107 18 / 21

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20231107 20 / 21

Request for Laboratory Services and CHAIN OF CUSTODY

No:037594

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Laboratory Information Section - Lab use only Received By (signature): Received By: Cooling Agent Present: Yes No Type:

Temperature Upon Receipt (°C) 5, × 3, Received Date: 10 /31 / 23 (mm/dd/yy) Custody Seal Present: Yes No LAB LIMS #: CQ 19813-Received Time: 17:00 (hr:min) Custody Seal Intact: Yes No INVOICE INFORMATION REPORT INFORMATION Company: DM WILLS (same as Report Information) RALF BOLVIN 11056 Project #: Site Location/ID Company: TURNAROUND TIME (TAT) REQUIRED Address: 150 JAMESON DRIVE TAT's are quoted in business days (exclude statutory holidays & weekends). PETERBOROUGH, ON no: 705-868-1691 Regular TAT (5-7days) Address: Samples received after 6pm or on weekends: TAT begins next business day 1 Day 2 Days 3 Days 4 Days RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION Email: OCCOUNTS @c/MWills.com NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Email: Tholvin@dmwills.com Specify Due Date: WITH SGS DRINKING WATER CHAIN OF CUSTODY **ANALYSIS REQUESTED** SPLP TCLP W & I SVOC PCB PHC VOC Pest Other (please specify) O.Reg 406/19 O.Reg 153/04 Other Regulations: Sewer By-Law: Table 1 Reg 347/558 (3 Day min TAT) Sanitary Res/Park Soil Texture: Coarse PWQO MMER Storm Table 2 Ind/Com tests tests Table 3 Agri/Other Medium/Fine CCME Other: Municipality: Table Metals & Inorganics
ind Ovt CMHg pH.(BRHWS),EC.SAR-st
[Cl. Newaster)
Full Metals Suite
ICP ments pius BHWS-solionly) Hg. CV Characterization ODWS Not Reportable *See note Soil Volume <350m3 >350m3 COMMENTS: Field Filtered (Y/N) RECORD OF SITE CONDITION (RSC) ICP Metals only □ PCB BTEX □B(a)F OCP Pesticides DATE TIME # OF VOCs all incl BTEX MATRIX SVOCs SAMPLE IDENTIFICATION SAMPLED SAMPLED BOTTLES F1-F4 11056 Well A377795- [hr Oct 31/23 11:00 am] GW N Observations/Comments/Special Instructions Sampled By (NAME): Signature: Pink Copy - Client (mm/dd/yy) Relinquished by (NAME): CHRIS 05TIC

Date of Issue: 07 JUNE 2023

the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

CA14079-NOV23 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAIL	.S	LABORATORY DETAIL	LS
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14079-NOV23
Project	11056	Received	11/02/2023
Order Number		Approved	11/09/2023
Samples	Ground Water (2)	Report Number	CA14079-NOV23 R1
		Date Reported	11/09/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 6 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 011390

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-19
Legend	20
Annexes	21

mg/L

Total Organic Carbon

FINAL REPORT

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			S	ample Number	7	8
				Sample Name	11056WellA3777	11056WellA3777
					96_1hr	96_6hr
= ODWS_AO_OG / WATER / Table 4 - Drinkin	ng Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
e = ODWS_MAC / WATER / Table 1,2 and 3 - D	Drinking Water - Reg O.169_03			Sample Date	02/11/2023	02/11/2023
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry						
UV Transmittance	%T				92.4	91.8
Alkalinity	mg/L as CaCO3	2	500		225	224
Bicarbonate	mg/L as CaCO3	2			225	224
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		5	4
Conductivity	uS/cm	2			454	461
Total Suspended Solids	mg/L	2			3	3
Turbidity	NTU	0.10	5	1	6.9	2.4
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			< 0.05	< 0.05
Ammonia+Ammonium (N)	as N mg/L	0.04			0.05	< 0.04
Dissolved Organic Carbon	mg/L	1	5		1	1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

			Sample Number	7	8
			•		
			Sample Hairle	96_1hr	96_6hr
ater - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
ng Water - Reg O.169_03			Sample Date	02/11/2023	02/11/2023
Units	RL	L1	L2	Result	Result
mg/L	0.06		1.5	< 0.06	< 0.06
mg/L	0.3			< 0.3	< 0.3
as N mg/L	0.03		1	< 0.03	< 0.03
as N mg/L	0.06		10	0.09	0.12
mg/L	2	500		23	21
mg/L	0.02			< 0.02	< 0.02
mg/L as CaCO3	0.05	100		260	256
mg/L	0.001	0.1		0.012	0.003
mg/L	0.0002		0.01	0.0002	< 0.0002
mg/L	0.002		5	0.010	0.008
mg/L	0.00008		1	0.0285	0.0313
mg/L	0.000007			0.000007	< 0.000007
mg/L	0.00001			< 0.00001	< 0.00001
mg/L	0.000004			0.000113	0.000043
mg/L	0.01			96.2	94.7
mg/L	0.000003		0.005	0.000003	< 0.000003
mg/L	0.0002	1		0.0006	0.0007
mg/L	0.00008		0.05	0.00021	0.00015
mg/L	0.007	0.3		0.804	0.371
mg/L	0.009			0.377	0.365
mg/L	0.001			4.83	4.72
	g Water - Reg O.169_03 Units mg/L mg/L as N mg/L as N mg/L mg/L	mg/L 0.06 mg/L 0.03 as N mg/L 0.06 mg/L 0.03 as N mg/L 0.06 mg/L 2 mg/L 0.02 mg/L 0.001 mg/L 0.001 mg/L 0.0002 mg/L 0.0002 mg/L 0.00008 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00004 mg/L 0.00003 mg/L 0.00008 mg/L 0.00003 mg/L 0.00008 mg/L 0.00008 mg/L 0.000003 mg/L 0.00008	ter - Reg O.169_03 g Water - Reg O.169_03 Units RL L1 mg/L 0.06 mg/L 0.3 as N mg/L 0.06 mg/L 0.006 mg/L 0.002 mg/L 0.001 mg/L 0.001 0.1 mg/L 0.0002 mg/L 0.00008 mg/L 0.000007 mg/L 0.000004 mg/L 0.000003 mg/L 0.00003 mg/L 0.00008 mg/L 0.000003 mg/L 0.00008 mg/L 0.000003 mg/L 0.000008 mg/L 0.000003 mg/L 0.000008 mg/L 0.000003 mg/L 0.000008 mg/L 0.000003 mg/L 0.000008 mg/L 0.0000003 mg/L 0.000008 mg/L 0.00000000000000000000000000000000000	Sample Matrix Sample Date	Sample Name 11056WellA3777 96_1hr Ground Water Ground Water Ground Water O2/11/2023 Sample Date O2/11/2023 O2/11/2023 Sample Date O2/1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

			Sample Number	7	8
			•		
			запірів ічате		96_6hr
g O.169_03			Sample Matrix		Ground Water
- Reg O.169_03			Sample Date	02/11/2023	02/11/2023
Units	RL	L1	L2	Result	Result
mg/L	0.00001	0.05		0.0199	0.0134
mg/L	0.00004			0.00024	0.00019
mg/L	0.0001			0.0006	0.0004
mg/L	0.01	200	20	2.37	2.24
mg/L	0.003			0.003	< 0.003
mg/L	0.00009		0.01	< 0.00009	< 0.00009
mg/L	0.02			4.76	4.72
mg/L	0.00005			< 0.00005	< 0.00005
mg/L	0.00008			0.168	0.165
mg/L	0.000005			< 0.000005	< 0.000005
mg/L	0.00006			0.00007	< 0.00006
mg/L	0.00007			0.00049	0.00011
mg/L	0.0009		0.006	< 0.0009	< 0.0009
mg/L	0.00004		0.05	0.00013	0.00012
mg/L	0.000002		0.02	0.000176	0.000202
mg/L	0.00001			0.00015	0.00016
mg/L	0.002	5		< 0.002	< 0.002
meq/L	-9999			5.36	5.25
meq/L	-9999			5.16	5.09
% difference	-9999			1.99	1.55
none	-9999			1.04	1.03
	Reg 0.169_03 Units mg/L mg/L<	mg/L 0.00001 mg/L 0.00004 mg/L 0.0001 mg/L 0.0001 mg/L 0.001 mg/L 0.003 mg/L 0.0009 mg/L 0.00005 mg/L 0.00008 mg/L 0.00005 mg/L 0.00000 mg/L 0.00007 mg/L 0.00009 mg/L 0.00004 mg/L 0.00001 mg/L 0.0002 mg/L 0.0002 mg/L 0.002 mg/L 0.999 meq/L -9999 meq/L -9999 % difference -9999	O.169_03 Reg O.169_03 Units RL L1 mg/L 0.00001 0.05 mg/L 0.00004 mg/L 0.001 200 mg/L 0.003 mg/L 0.0009 mg/L 0.0009 mg/L 0.0005 mg/L 0.00005 mg/L 0.00005 mg/L 0.00006 mg/L 0.00006 mg/L 0.00007 mg/L 0.00004 mg/L 0.00004 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00002 mg/L 0.00001	Name	Sample Name 11056WellA3777 96_1hr Ground Water Sample Date 02/11/2023

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER				Sample Number	7	8
				Sample Name	11056WellA3777	11056WellA3777
					96_1hr	96_6hr
.1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	r - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
.2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking \	Water - Reg O.169_03			Sample Date	02/11/2023	02/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Total Dissolved Solids (calculated)	mg/L	-9999			268	264
Conductivity (calculated)	uS/cm	-9999			526	517
Langeliers Index 4° C	@ 4° C	-9999			0.38	0.32
Saturation pH 4°C	pHs @ 4°C	-9999			7.61	7.62
Microbiology						
Total Coliform	cfu/100mL	0		0	0	0
E. Coli	cfu/100mL	0		0	0	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			130	36
Other (ORP)						
, ,	No ···-:	0.05	8.5		7.99	7.94
pH	No unit					
Chloride	mg/L	1	250		6	6
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			< 0.002	< 0.002

EXCEEDANCE SUMMARY

ODWS_AO_OG / ODWS_MAC / WATER / - - Table 4 WATER / - - Table - Drinking Water -1,2 and 3 -Reg O.169_03 Drinking Water -Reg O.169_03 Method Units L1 L2 Result Parameter 11056WellA377796_1hr

Turbidity	SM 2130	NTU	6.9	5	1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	260	100	
Iron	SM 3030/EPA 200.8	mg/L	0.804	0.3	

11056WellA377796_6hr

Turbidity	SM 2130	NTU	2.4		1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	256	100	
Iron	SM 3030/EPA 200.8	mg/L	0.371	0.3	

8/21 20231109

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate LCS/			S/Spike Blank	Matrix Spike / Ref.			
Refere	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0114-NOV23	mg/L as	2	< 2	1	20	102	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0056-NOV23	mg/L	0.04	<0.04	ND	10	97	90	110	92	75	125

20231109 9 / 21

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch Units Reference		RL M	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
					RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5010-NOV23	mg/L	1	<1	ND	20	104	80	120	107	75	125
Sulphate	DIO5010-NOV23	mg/L	2	<2	13	20	102	80	120	105	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike Recovery Limits Recovery		Spike Recovery		ry Limits %)		
						(70)	(%)	Low	High	(%)	Low	High	
Bromide	DIO0191-NOV23	mg/L	0.3	<0.3	ND	20	103	90	110	93	75	125	
Nitrite (as N)	DIO0191-NOV23	mg/L	0.03	<0.03	ND	20	99	90	110	103	75	125	
Nitrate (as N)	DIO0191-NOV23	mg/L	0.06	<0.06	ND	20	101	90	110	105	75	125	

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	_CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0054-NOV23	mg/L	1	<1	2	20	95	90	110	98	75	125
Total Organic Carbon	SKA0054-NOV23	mg/L	1	<1	2	20	95	90	110	98	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Carbonate	EWL0114-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0114-NOV23	mg/L as CaCO3	2	< 2	1	10	NA	90	110	NA		
ОН	EWL0114-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

QC SUMMARY

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0166-NOV23	TCU	3	< 3	0	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0114-NOV23	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	ī.
	Reference			Blank		AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0169-NOV23	mg/L	0.06	<0.06	ND	10	100	90	110	94	75	125

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch Reference	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0007-NOV23	mg/L	0.00001	< 0.00001	ND	20	93	80	120	91	70	130

FINAL REPORT

20231109 13 / 21

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
							(%)	Low	High	(%)	Low	High
Silver (total)	EMS0035-NOV23	mg/L	0.00005	<0.00005	ND	20	98	90	110	87	70	130
Aluminum (total)	EMS0035-NOV23	mg/L	0.001	<0.001	7	20	100	90	110	112	70	130
Arsenic (total)	EMS0035-NOV23	mg/L	0.0002	<0.0002	ND	20	98	90	110	97	70	130
Barium (total)	EMS0035-NOV23	mg/L	0.00008	<0.00008	0	20	93	90	110	75	70	130
Beryllium (total)	EMS0035-NOV23	mg/L	0.000007	<0.000007	12	20	98	90	110	88	70	130
Boron (total)	EMS0035-NOV23	mg/L	0.002	<0.002	10	20	107	90	110	96	70	130
Bismuth (total)	EMS0035-NOV23	mg/L	0.00001	<0.00001	ND	20	97	90	110	83	70	130
Calcium (total)	EMS0035-NOV23	mg/L	0.01	<0.01	3	20	105	90	110	127	70	130
Cadmium (total)	EMS0035-NOV23	mg/L	0.000003	<0.000003	0	20	99	90	110	99	70	130
Cobalt (total)	EMS0035-NOV23	mg/L	0.000004	<0.000004	0	20	99	90	110	94	70	130
Chromium (total)	EMS0035-NOV23	mg/L	0.00008	<0.00008	0	20	101	90	110	105	70	130
Copper (total)	EMS0035-NOV23	mg/L	0.0002	<0.0002	2	20	98	90	110	97	70	130
Iron (total)	EMS0035-NOV23	mg/L	0.007	<0.007	0	20	102	90	110	100	70	130
Potassium (total)	EMS0035-NOV23	mg/L	0.009	<0.009	2	20	103	90	110	111	70	130
Magnesium (total)	EMS0035-NOV23	mg/L	0.001	<0.001	1	20	107	90	110	89	70	130
Manganese (total)	EMS0035-NOV23	mg/L	0.00001	<0.00001	1	20	96	90	110	78	70	130
Molybdenum (total)	EMS0035-NOV23	mg/L	0.00004	<0.00004	5	20	96	90	110	96	70	130
Sodium (total)	EMS0035-NOV23	mg/L	0.01	<0.01	1	20	105	90	110	95	70	130
Nickel (total)	EMS0035-NOV23	mg/L	0.0001	<0.0001	7	20	94	90	110	86	70	130
Lead (total)	EMS0035-NOV23	mg/L	0.00009	<0.00009	ND	20	98	90	110	88	70	130

20231109 14 / 21

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery	Recove	ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0035-NOV23	mg/L	0.003	<0.003	ND	20	103	90	110	NV	70	130
Antimony (total)	EMS0035-NOV23	mg/L	0.0009	<0.0009	ND	20	97	90	110	97	70	130
Selenium (total)	EMS0035-NOV23	mg/L	0.00004	<0.00004	ND	20	100	90	110	92	70	130
Silicon (total)	EMS0035-NOV23	mg/L	0.02	<0.02	1	20	102	90	110	NV	70	130
Tin (total)	EMS0035-NOV23	mg/L	0.00006	<0.00006	ND	20	101	90	110	NV	70	130
Strontium (total)	EMS0035-NOV23	mg/L	0.00008	<0.00008	1	20	99	90	110	82	70	130
Titanium (total)	EMS0035-NOV23	mg/L	0.00007	<0.00005	ND	20	98	90	110	NV	70	130
Thallium (total)	EMS0035-NOV23	mg/L	0.000005	<0.000005	0	20	98	90	110	88	70	130
Uranium (total)	EMS0035-NOV23	mg/L	0.000002	2e-006	5	20	98	90	110	89	70	130
Vanadium (total)	EMS0035-NOV23	mg/L	0.00001	<0.00001	16	20	97	90	110	98	70	130
Zinc (total)	EMS0035-NOV23	mg/L	0.002	<0.002	5	20	101	90	110	97	70	130

QC SUMMARY

Microbiology

Method: SM 9215A | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery	Recover	=
						(%)	Recovery (%)	Low	High	(%)	Low	High
Heterotrophic Plate Count (HPC)	BAC9064-NOV23	cfu/1mL	-	ACCEPTED	ACCEPTE D							
E. Coli	BAC9064-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE D							
Total Coliform	BAC9064-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE D							

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	ī.)
	Reference	əference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0114-NOV23	No unit	0.05	NA	0		100			NA		

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD AC Spike (%) (%) Recovery		•	Spike Recovery	Recover	-		
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0052-NOV23	mg/L	0.002	<0.002	ND	10	109	80	120	96	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphide	SKA0090-NOV23	mg/L	0.02	<0.02	ND	20	105	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref: MF-CA-IENVIEWI -I AK-AN-004

Parameter Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0223-NOV23	mg/L	2	< 2	1	10	95	90	110	NA		

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duplicate			LCS/Spike Blank		Matrix Spike / Ref.		
Reference	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0041-NOV23	mg/L	0.05	<0.05	ND	10	108	90	110	107	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
Turbidity	EWL0102-NOV23	NTU	0.10	< 0.10	0	10	99	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20231109 20 / 21

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

No: 011390

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section - Lab use only Received By (signature): Cooling Agent Present: Yes No \(\subseteq \) Type: \(\overline{LCC} \)

Temperature Upon Receipt (°C) \(\overline{C} \), \(\overline{C} \), \(\overline{C} \) Received Date: Custody Seal Present: Yes No 🔀 Custody Seal Intact: Yes No K REPORT INFORMATION INVOICE INFORMATION DM WILLS (same as Report Information) Quotation #: Contact: RALF BOLVIN Site Location/ID: Address: 150 JAMESON DEIVE TURNAROUND TIME (TAT) REQUIRED Contact: PETERBOROUGH, 6N Phone: 705-868-1691 TAT's are quoted in business days (exclude statutory holidays & weekends). Regular TAT (5-7days) Samples received after 6pm or on weekends: TAT begins next business day RUSH TAT (Additional Charges May Apply): ☐ 1 Day ☐ 2 Days ☐ 3 Days ☐ 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION Email: Toolvin@dmwills.com | Email: accounts@dmwills.com Specify Due Date: NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY REGULATIONS **ANALYSIS REQUESTED** M & I SVOC PCB PHC VOC Regulation 153/04: Pest Other Regulations: Sewer By-Law: Other (please specify) TCLP ☐ Table 1 Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Sanitary Water Characterization Pkg Specify Table 2 ☐ Coarse ☐ Ind/Com ☐ PWQO ☐ MMER Storm TCLP Sother: S ☐ Table 3 Agri/Other ☐ Medium ☐ CCME Municipality: Metals & Inorganics ind CVVI, CN, Hg PH, (B(HWS), EC, SAR-so (CI, Na-water) Full Metals Suite ICP metals plus B(HWS-soll only) Hg, CVV ICP Metals only SBAS, Bas, BG, COG, CO, CD, PMO, NI, ☐ Table ☐ MISA ☐ Fine □M&I Filtered (Y/N) RECORD OF SITE CONDITION (RSC) YES COMMENTS: Dvoc BTEX PCB Pesticides F1-F4 only no BTEX PAHs only DATE TIME # OF B(a)F SAMPLE IDENTIFICATION SVOCs all incl PAHs, A MATRIX SAMPLED SAMPLED BOTTLES PCBs BTEX Field DABN Dionit 11056Well A377796-1hr Nov 2/23 10:20am 13 11056 Well A377796-6hr Nov 2/23 3:20am 13 GW N 10 11 12 Observations/Comments/Special Instructions Sampled By (NAME): Pink Copy - Client Relinquished by (NAME):

Revision #: 1.2 Date of Issue: 09 Sept, 2019 Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA14296-NOV23 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	>	LABORATORY DETAILS	8
Client	D.M. Wills -Peterborough	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	705-652-2000
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	Maarit.Wolfe@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14296-NOV23
Project	11056	Received	11/08/2023
Order Number		Approved	11/15/2023
Samples	Ground Water (2)	Report Number	CA14296-NOV23 R1
		Date Reported	11/15/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 5 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 036655

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Llwoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-18
Legend	19
Annexes	20

Total Organic Carbon

mg/L

FINAL REPORT

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

Samplers: Chris Ostic

MATRIX: WATER			Sa	ample Number	7	8
				Sample Name	11056-WellA377	11056-WellA377
					799_1hr	799_6hr
= ODWS_AO_OG / WATER / Table 4 - Drinki	king Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - I	Drinking Water - Reg O.169_03			Sample Date	08/11/2023	08/11/2023
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry						
UV Transmittance	%T				96.7	97.1
Alkalinity	mg/L as CaCO3	2	500		198	198
Bicarbonate	mg/L as CaCO3	2			198	198
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		4	3
Conductivity	uS/cm	2			397	409
Total Suspended Solids	mg/L	2			2	< 2
Turbidity	NTU	0.10	5	1	0.80	0.55
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			< 0.05	< 0.05
Ammonia+Ammonium (N)	as N mg/L	0.04			< 0.04	< 0.04
Dissolved Organic Carbon	mg/L	1	5		1	1

< 1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

					_	_
IATRIX: WATER				Sample Number	7	8
				Sample Name	11056-WellA377	
				Comple Met-	799_1hr	799_6hr
= ODWS_AO_OG / WATER / Table 4 - Drinking V				Sample Matrix		Ground Water 08/11/2023
= ODWS_MAC / WATER / Table 1,2 and 3 - Drink				Sample Date	08/11/2023	
Parameter	Units	RL	L1	L2	Result	Result
etals and Inorganics						
Fluoride	mg/L	0.06		1.5	< 0.06	< 0.06
Bromide	mg/L	0.3			< 0.3	< 0.3
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	1.84	1.62
Sulphate	mg/L	2	500		7	8
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		220	225
Aluminum (total)	mg/L	0.001	0.1		0.007	0.003
Arsenic (total)	mg/L	0.0002		0.01	< 0.0002	< 0.0002
Boron (total)	mg/L	0.002		5	0.015	0.015
Barium (total)	mg/L	0.00008		1	0.00993	0.00982
Beryllium (total)	mg/L	0.000007			< 0.000007	< 0.000007
Bismuth (total)	mg/L	0.00001			< 0.00001	< 0.00001
Cobalt (total)	mg/L	0.000004			0.000105	0.000031
Calcium (total)	mg/L	0.01			82.1	83.9
Cadmium (total)	mg/L	0.000003		0.005	< 0.000003	< 0.000003
Copper (total)	mg/L	0.0002	1		0.0009	0.0006
Chromium (total)	mg/L	0.00008		0.05	0.00073	0.00049
Iron (total)	mg/L	0.007	0.3		0.074	0.026
Potassium (total)	mg/L	0.009			0.373	0.361
Magnesium (total)	mg/L	0.001			3.61	3.82
	mg/L	0.00.				0.02

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX, MATER			و	ample Number	7	8
MATRIX: WATER				•	, 11056-WellA377	11056-WellA377
				Campio Haino	799_1hr	799_6hr
L1 = ODWS_AO_OG / WATER / Table 4 -	Drinking Water - Reg O.169_03			Sample Matrix		Ground Water
L2 = ODWS_MAC / WATER / Table 1,2 ar	nd 3 - Drinking Water - Reg O.169_03			Sample Date	08/11/2023	08/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (contin	nued)					
Manganese (total)	mg/L	0.00001	0.05		0.00835	0.00197
Molybdenum (total)	mg/L	0.00004			0.00018	0.00009
Nickel (total)	mg/L	0.0001			0.0005	0.0002
Sodium (total)	mg/L	0.01	200	20	1.54	1.61
Phosphorus (total)	mg/L	0.003			< 0.003	< 0.003
Lead (total)	mg/L	0.00009		0.01	0.00011	< 0.00009
Silicon (total)	mg/L	0.02			4.28	4.34
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			0.137	0.140
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			< 0.00006	< 0.00006
Titanium (total)	mg/L	0.00007			0.00018	< 0.00007
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	0.00015	0.00012
Uranium (total)	mg/L	0.000002		0.02	0.000186	0.000177
Vanadium (total)	mg/L	0.00001			0.00027	0.00027
Zinc (total)	mg/L	0.002	5		< 0.002	< 0.002

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER				Sample Number	7	8
				Sample Name	11056-WellA377	11056-WellA377
					799_1hr	799_6hr
.1 = ODWS_AO_OG / WATER / Table 4 - Drinking W	Vater - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinki	ing Water - Reg O.169_03			Sample Date	08/11/2023	08/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Microbiology						
Total Coliform	cfu/100mL	0		0	6	2
E. Coli	cfu/100mL	0		0	0	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			640	115
Other (ORP)						
рН	No unit	0.05	8.5		8.15	8.09
Chloride	mg/L	1	250		2	3
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			< 0.002	< 0.002

EXCEEDANCE SUMMARY

				ODWS_AO_OG /	ODWS_MAC /
				WATER / Table 4	WATER / Table
				- Drinking Water -	1,2 and 3 -
				Reg O.169_03	Drinking Water -
					Reg O.169_03
Parameter	Method	Units	Result	L1	L2
56-WellA377799_1hr					
Total Coliform	ОМОЕ	cfu/100mL	6		0
	MICROMFDC-E3407A				
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	220	100	
56-WellA377799_6hr					
Total Coliform	OMOE	cfu/100mL	2		0
	MICROMFDC-E3407A				
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	225	100	

20231115 7 / 20

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0252-NOV23	mg/L as	2	< 2	2	20	94	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0112-NOV23	mg/L	0.04	<0.04	1	10	96	90	110	97	75	125

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5030-NOV23	mg/L	1	<1	ND	20	102	80	120	109	75	125
Sulphate	DIO5030-NOV23	mg/L	2	<2	ND	20	104	80	120	108	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery		ery Limits %)	
						(70)	Recovery (%)	Low	High	(%)	Low	High	
Bromide	DIO0361-NOV23	mg/L	0.3	<0.3	ND	20	97	90	110	91	75	125	
Nitrite (as N)	DIO0361-NOV23	mg/L	0.03	<0.03	ND	20	99	90	110	101	75	125	
Nitrate (as N)	DIO0361-NOV23	mg/L	0.06	<0.06	ND	20	102	90	110	99	75	125	

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Duplicate		LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Dissolved Organic Carbon	SKA0113-NOV23	mg/L	1	<1	2	20	103	90	110	96	75	125	
Total Organic Carbon	SKA0113-NOV23	mg/L	1	<1	2	20	103	90	110	96	75	125	

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Carbonate	EWL0252-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0252-NOV23	mg/L as CaCO3	2	< 2	2	10	NA	90	110	NA		
ОН	EWL0252-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

QC SUMMARY

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0304-NOV23	TCU	3	< 3	0	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0252-NOV23	uS/cm	2	4	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0261-NOV23	mg/L	0.06	<0.06	0	10	103	90	110	NV	75	125

CA14296-NOV23 R1

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0019-NOV23	mg/L	0.00001	< 0.00001	3	20	98	80	120	98	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits 6)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0100-NOV23	mg/L	0.00005	<0.00005	ND	20	106	90	110	78	70	130
Aluminum (total)	EMS0100-NOV23	mg/L	0.001	<0.001	19	20	100	90	110	83	70	130
Arsenic (total)	EMS0100-NOV23	mg/L	0.0002	<0.0002	4	20	107	90	110	103	70	130
Barium (total)	EMS0100-NOV23	mg/L	0.00008	<0.00008	2	20	102	90	110	96	70	130
Beryllium (total)	EMS0100-NOV23	mg/L	0.000007	<0.000007	ND	20	92	90	110	94	70	130
Boron (total)	EMS0100-NOV23	mg/L	0.002	<0.002	1	20	97	90	110	94	70	130
Bismuth (total)	EMS0100-NOV23	mg/L	0.00001	<0.00001	ND	20	106	90	110	86	70	130
Calcium (total)	EMS0100-NOV23	mg/L	0.01	<0.01	4	20	100	90	110	80	70	130
Cadmium (total)	EMS0100-NOV23	mg/L	0.000003	<0.000003	ND	20	108	90	110	94	70	130
Cobalt (total)	EMS0100-NOV23	mg/L	0.000004	<0.000004	10	20	100	90	110	94	70	130
Chromium (total)	EMS0100-NOV23	mg/L	0.00008	<0.00008	ND	20	104	90	110	90	70	130
Copper (total)	EMS0100-NOV23	mg/L	0.0002	<0.0002	1	20	102	90	110	94	70	130
Iron (total)	EMS0100-NOV23	mg/L	0.007	<0.007	1	20	106	90	110	75	70	130
Potassium (total)	EMS0100-NOV23	mg/L	0.009	<0.009	1	20	99	90	110	88	70	130
Magnesium (total)	EMS0100-NOV23	mg/L	0.001	<0.001	1	20	101	90	110	89	70	130
Manganese (total)	EMS0100-NOV23	mg/L	0.00001	<0.00001	2	20	99	90	110	97	70	130
Molybdenum (total)	EMS0100-NOV23	mg/L	0.00004	<0.00004	2	20	100	90	110	90	70	130
Sodium (total)	EMS0100-NOV23	mg/L	0.01	<0.01	1	20	101	90	110	91	70	130
Nickel (total)	EMS0100-NOV23	mg/L	0.0001	<0.0001	12	20	105	90	110	95	70	130
Lead (total)	EMS0100-NOV23	mg/L	0.00009	<0.00009	ND	20	105	90	110	93	70	130

20231115 13 / 20

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	·.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	-	Spike Recovery	Recove	ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0100-NOV23	mg/L	0.003	<0.003	2	20	101	90	110	NV	70	130
Antimony (total)	EMS0100-NOV23	mg/L	0.0009	<0.0009	ND	20	103	90	110	94	70	130
Selenium (total)	EMS0100-NOV23	mg/L	0.00004	<0.00004	ND	20	102	90	110	111	70	130
Silicon (total)	EMS0100-NOV23	mg/L	0.02	<0.02	0	20	99	90	110	NV	70	130
Tin (total)	EMS0100-NOV23	mg/L	0.00006	<0.00006	ND	20	97	90	110	NV	70	130
Strontium (total)	EMS0100-NOV23	mg/L	0.00008	<0.00008	2	20	98	90	110	92	70	130
Titanium (total)	EMS0100-NOV23	mg/L	0.00007	<0.00005	3	20	96	90	110	NV	70	130
Thallium (total)	EMS0100-NOV23	mg/L	0.000005	<0.000005	ND	20	105	90	110	93	70	130
Uranium (total)	EMS0100-NOV23	mg/L	0.000002	2e-006	1	20	92	90	110	101	70	130
Vanadium (total)	EMS0100-NOV23	mg/L	0.00001	<0.00001	6	20	102	90	110	105	70	130
Zinc (total)	EMS0100-NOV23	mg/L	0.002	<0.002	ND	20	104	90	110	110	70	130

QC SUMMARY

Microbiology

Method: SM 9215A | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duplicate	icate	LC	S/Spike Blank		М	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Heterotrophic Plate Count (HPC)	BAC9164-NOV23	cfu/1mL	-	ACCEPTED	ACCEPTE D							
E. Coli	BAC9164-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE D							
Total Coliform	BAC9164-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE D							

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	latrix Spike / Ref		
	Reference			Blank	RPD	RPD AC (%)		Recove	-	Spike Recovery	Recover	•	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
рН	EWL0252-NOV23	No unit	0.05	NA	1		100			NA			

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0107-NOV23	mg/L	0.002	<0.002	ND	10	99	80	120	NV	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	ī.
	Reference			Blank	RPD AC (%)	Spike		ry Limits %)	Spike Recovery		ory Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphide	SKA0114-NOV23	mg/L	0.02	<0.02	ND	20	116	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	1
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0346-NOV23	mg/L	2	< 2	0	10	97	90	110	NA		

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA5051-NOV23	mg/L	0.05	<0.05	3	10	100	90	110	90	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limit		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0243-NOV23	NTU	0.10	< 0.10	0	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20231115 19 / 20

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

Laboratory Information Section - Lab use only

No: 036655

Page____ of

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Rec	perived by: serived Date: 11 / 08/23 (mm/dd/y serived Time: 15: 05 (hr : min)		Custody Seal P Custody Seal Ir	Present: Yes	No X		Cool	ing Age	ent Pro	esent: `on Recei	Yes 🔀	1 No	5	Type:_	I	ie_					LAB L	.IMS#:(α	14296-
	REPORT INFORMATION	IN	VOICE INFOR	MATION																				NOV
Cor	mpany: DM WILLS	(same as Re	eport Informati	ion)	Qı	uotatio	on #:										P.O.#: 11056 LAB LIMS #: CQ 14296- NOV 23							
Cor	ntact: RALF BOLVIN	Company:			Pr	oject :	#:	11	OF	56								Site Location/ID:						
Add	dress: 150 JAMESON DRIVE	Contact:				TURNAROUND TIME (TAT) REQUIRED																		
	PETEZBOROUGH, ON	Address:				Regular TAT (5-7days) TAT's are quoted in business days (exclude statutory holidate) Samples received after 6pm or on weekends: TAT begins in																		
Pho	one: 705-868-1691		40.7		RI	JSH T	TAT (Add	itional	I Cha	arges N	lay Ap	ply):		□1	Day	□2 D	ays 3		10.00					
Fax	네가 나 나가 하는데 그 그 그는 사람이 그렇게 하고 말했다며?	Phone:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PI	EASI	E CONFI	RM RL	JSH I	FEASIE	BILITY	WITH	SGS	REPR	ESEN	TATIVE	PRIOR T	O SUB	MISSI	ON				
Email: Molvin@dmwills. com Email: accounts@dmwills.c						ecify	Due Date	e:				0.014					WITH SGS							ON MUST BE SUBMITTED
		ULATIONS		Table 1						21/00		1000000				UES		n e				001.0		
-	O.Reg 153/04 O.Reg 406/19	Other Regula		Sewer By-L	1 (N. 10) (10) (10)		M & I	-		SVOC	PC	B	HC	V	OC	Pest	U	her (ple	ease sp	ecify)		SPLP	TCLP	
ľĒ	Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium/Fine	Reg 347/558	8 (3 Day min TAT MMER Other:	T) Sanita Storm Municipality:				, po														Specify tests	Specify tests	
P. 10 T. C.	Table Appx	MISA					R-soil)	Ba, Be, B,			Aroclo										Characterization Pkg	□Metals	D _{M&I}	
	Soil Volume	ODWS Not I		note		nics	H.(B(HWS),EC,SAR-S Suite	Sb,As,	V,Zn						Co.	Jer.					tion ed	□voc	□voc	COMMENTS:
	RECORD OF SITE CONDITION (RSC)	YES _	NO			rda	Luite	only	> 10000			×				offy off					riza	□ _{1,4-}	□рсв	
						lno	S S	0 0	Ai,Se,A		Tota	BTEX				S spe					acte	Dioxane	□B(a)P	4 97
	SAMPLE IDENTIFICATION .	DATE	TIME	# OF MAT	RIX	Is & Ino	inci Crvi, Cn, Hg pH, (B(HWS), EC (Cl, Na-water) (Cl, Na-water) Full Metals Suite	ICP Metals	b,Mo,f	SVOCs	9, 00	+	only	×	only	Pesticides Organochlorine or				g: G:	Water Char	□ _{ABN}	□ ABN	
		SAMPLED	SAMPLED	BOTTLES		atal	incl CrVI, CN, (CI, Na-water)	Z	O,Cu,P	SVOCS	Bs	F1-F4	F1-F4	VOCs all incl BTEX	BTEX only	Stic				Ner cify pk	iter (□ Ignit.	
		√	V				<u> </u>	<u></u>	0,70	S	PCB	17	T 8	S =	B	De Orga				Spe	Wa		3.4	Marie Late - 1945
1	11056 Well A377799-1hr 11056 Well A377799-6hr	10:20 AM	11/08/23	13 6	1 Wi	1															X			
2	11056 Well A377799-6hr	3:20 PM	11/08/23	13 G	W	N															X			
3																								
4																								
5			- 10 m																		2			
6				5.7.7			-239													ilai.				
7																						- B		
8		The second second	37 F. W. S.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																				
9																						354		
10		3.22 6.0		200											194									
11				5.57.0																				
12																								
Ob	servations/Comments/Special Instructions		AND THE REAL PROPERTY.																					
Sai	mpled By (NAME): CHRIS OSTIC		-	Signature: Uw	000	T									Date:	11	,08	, 23)	(m	ım/dd/y	/y)		Pink Copy - Client
2.79(1)	linquished by (NAME): CHRIS OST	10	(2003년: 12 P. M. H.	Signature: \mathcal{C}_{\wedge}	in O	A									Date:	-11	108	123	2		ım/dd/y			Yellow & White Copy - SGS
	sion # 1.7 Note: Submission of samples to SGS the contract, or in an alternation	S is acknowledgement thative format (e.g. shippin	at you have been paged documents). {3}	Results may be sent by	email to an	unlimit	ed number of	ansporta of addres	sses for	r no addit	(2) Sub	nission t. Fax i	or samples availab	les to SG	request	nsidered a	utnorization i	or complet ued by the	Compai	ny und	der its G	es may ap eneral Co	ppear on the anditions of	f Service accessible at

CA15268-SEP24 R---

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS		LABORATORY DETAILS	S
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA15268-SEP24
Project	11056	Received	09/27/2024
Order Number		Approved	10/01/2024
Samples	Ground Water (7)	Report Number	CA15268-SEP24 R
		Date Reported	10/01/2024

COMMENTS

Temperature of Sample upon Receipt: 8 degrees C

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	. 1-2
ndex	
Results	
exceedance Summary	
QC Summary	
·	
egend	
Annexes	8

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			;	Sample Number	5	6	7	8	9	10	11
				Sample Name	BH110-22	BH107-22	A377799	A377796	DUP-01	BH101-22	A377795
L1 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg O.169_03				Sample Matrix	Ground Water						
				Sample Date	27/09/2024	27/09/2024	27/09/2024	27/09/2024	27/09/2024	27/09/2024	27/09/2024
Parameter	Units	RL	L1		Result						
Metals and Inorganics											
Nitrite (as N)	as N mg/L	0.03	1		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06	10		4.81	0.17	1.82	0.09	0.09	8.67	1.18
Nitrate + Nitrite (as N)	as N mg/L	0.06			4.81	0.17	1.82	0.09	0.09	8.67	1.18

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20241001 5 / 8

QC SUMMARY

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-IENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recovery Limits		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Nitrate + Nitrite (as N)	DIO0631-SEP24	mg/L	0.06	<0.06	NA		NA			NA			
Nitrite (as N)	DIO0631-SEP24	mg/L	0.03	<0.03	ND	20	101	90	110	104	75	125	
Nitrate (as N)	DIO0631-SEP24	mg/L	0.06	<0.06	1	20	100	90	110	103	75	125	

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20241001 6 / 8

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20241001 7 / 8

Received By:

Request for Laboratory Services and CHAIN OF CUSTODY

Laboratory Information Section - Lab use only

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

SEP 7 7 2024 Received By (signature): Cooling Agent Present: Yes No Type: Temperature Upon Receipt (°C) Custody Seal Present: Yes No Yes No Custody Seal Intact: REPORT INFORMATION INVOICE INFORMATION Company: DM WILLS 11056 (same as Report Information) Quotation #: Contact: RALF BOLVIN 11056 Project #: Site Location/ID: Address: 50 JAMESON DR TURNAROUND TIME (TAT) REQUIRED Contact PETERBOROUGH, ON Phone: 705-868-1691 TAT's are quoted in business days (exclude statutory holidays & weekends). Regular TAT (5-7days) Address Samples received after 6pm or on weekends: TAT begins next business day RUSH TAT (Additional Charges May Apply): ☐ 1 Day ☐ 2 Days ☐ 3 Days ☐ 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Email: Tholyin@dmw: 115 com Email: accounts @dmw: 115, com Specify Due Date WITH SGS DRINKING WATER CHAIN OF CUSTODY **ANALYSIS REQUESTED** M & I SVOC PCB PHC VOC Pest Regulation 153/04: Other Regulations: Other (please specify) TCLP Sewer By-Law: Table 1 ☐ Res/Park Reg 347/558 (3 Day min TAT) Soil Texture: ☐ Sanitary Characterization Pkg ☐ Table 2 ☐ Ind/Com ☐ Coarse ☐ PWQO ☐ MMER Storm TCLP CCME Other: S ☐ Table 3 Agri/Other ☐ Medium Municipality: Metals & Inorganics no GOV, CXH9 pH,(BHWS),EC.SAR-se (CI. Newater) Built Full Metals Suite 10P metals plus B(HWS-soil only) Hg, CXH ICP Metals only SBARSBBB GOOGOCO,PP,MONI, tests ☐ Table ☐ Fine DM&I Field Filtered (Y/N) RECORD OF SITE CONDITION (RSC) YES COMMENTS: Dvoc BTEX □РСВ DATE TIME # OF ☐B(a)I SAMPLE IDENTIFICATION SVOCS MATRIX VOCs all incl BTEX SAMPLED SAMPLED BOTTLES F1-F4 on BTEX Water PCBs Sept 27/24 BH110-22 GW BH107-22 A377799 A377796 DUP-01 BH101-22 PM A377795 PM Observations/Comments/Special Instructions Sampled By (NAME): Pink Copy - Client Relinquished by (NAME): Revision #: 1.2 ortation of samples. {2} Submission of samples to SGS is con Date of Issue: 09 Sept, 2019 the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

CA14459-SEP24 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	D.M. Wills -Peterborough	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	705-652-2143
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	brad.moore@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14459-SEP24
Project	11056	Received	09/11/2024
Order Number		Approved	09/18/2024
Samples	Ground Water (2)	Report Number	CA14459-SEP24 R1
		Date Reported	09/18/2024

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 10 degrees C

Cooling Agent Present: yes Custody Seal Present: no

Chain of Custody Number:039486

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mod

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

1 / 20

Member of the SGS Group (SGS SA)

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-18
Legend	19
Annexes	20

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			S	ample Number	7	8
				Sample Name	A395881_1 hr	A395881_6 hr
= ODWS_AO_OG / WATER / Table 4 - Drink	king Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
= ODWS_MAC / WATER / Table 1,2 and 3 -	- Drinking Water - Reg O.169_03			Sample Date	11/09/2024	11/09/2024
Parameter	Units	RL	L1	L2	Result	Result
Seneral Chemistry						
UV Transmittance	%T				91.2	91.2
Alkalinity	mg/L as CaCO3	2	500		169	170
Bicarbonate	mg/L as CaCO3	2			169	170
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		5	6
Conductivity	uS/cm	2			360	359
Total Suspended Solids	mg/L	2			4	2
Turbidity	NTU	0.10	5	1	2.0	1.4
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.17	0.19
Ammonia+Ammonium (N)	as N mg/L	0.04			0.18	0.18
Dissolved Organic Carbon	mg/L	1	5		1	1
Total Organic Carbon	mg/L	1			1	1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER				Sample Number	7	8
				Sample Name	A395881_1 hr	A395881_6 hr
= ODWS_AO_OG / WATER / Table 4 -	Drinking Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
= ODWS_MAC / WATER / Table 1,2 an	d 3 - Drinking Water - Reg O.169_03			Sample Date	11/09/2024	11/09/2024
Parameter	Units	RL	L1	L2	Result	Result
letals and Inorganics						
Fluoride	mg/L	0.06		1.5	0.11	0.12
Bromide	mg/L	0.3			< 0.3	< 0.3
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	< 0.06	< 0.06
Sulphate	mg/L	2	500		22	22
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		187	191
Aluminum (total)	mg/L	0.001	0.1		0.001	< 0.001
Arsenic (total)	mg/L	0.0002		0.01	0.0003	0.0002
Boron (total)	mg/L	0.002		5	0.011	0.009
Barium (total)	mg/L	0.00008		1	0.150	0.151
Beryllium (total)		0.000007			< 0.000007	< 0.000007
Bismuth (total)		0.00001			< 0.00001	< 0.00001
Cobalt (total)		0.000004			0.000012	0.000008
Calcium (total)	mg/L	0.01			49.9	51.2
Cadmium (total)		0.000003		0.005	< 0.000003	< 0.000003
Copper (total)	mg/L	0.001	1		< 0.001	< 0.001
Chromium (total)	mg/L			0.05	0.00010	< 0.0008
Iron (total)	mg/L	0.007	0.3	0.00	0.438	0.398
Potassium (total)	mg/L	0.007	0.5		0.438	0.824
, ,					15.2	15.2
Magnesium (total)	mg/L	0.001				
Manganese (total)	mg/L	0.00001	0.05		0.00981	0.00946

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

					_	_
MATRIX: WATER			;	Sample Number	7	8
				Sample Name	A395881_1 hr	A395881_6 hr
= ODWS_AO_OG / WATER / Table 4 - Drinking	Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
= ODWS_MAC / WATER / Table 1,2 and 3 - Drin				Sample Date	11/09/2024	11/09/2024
Parameter	Units	RL	L1	L2	Result	Result
letals and Inorganics (continued)						
Molybdenum (total)	mg/L	0.0004			< 0.0004	< 0.0004
Nickel (total)	mg/L	0.0001			< 0.0001	< 0.0001
Sodium (total)	mg/L	0.01	200	20	3.82	3.59
Phosphorus (total)	mg/L	0.003			0.008	0.011
Lead (total)	mg/L	0.00009		0.01	0.00013	< 0.00009
Silicon (total)	mg/L	0.02			11.5	10.9
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			0.353	0.354
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			< 0.00006	< 0.00006
Titanium (total)	mg/L	0.0001			< 0.0001	< 0.0001
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	< 0.00004	< 0.00004
Uranium (total)		0.000002		0.02	0.000012	0.000014
Vanadium (total)	mg/L				0.00003	0.00003
Zinc (total)	mg/L	0.002	5		< 0.002	< 0.002
Cation sum	meq/L	-9999			3.97	4.03
Anion Sum		-9999			3.86	3.89
	meq/L					
Anion-Cation Balance	% difference	-9999			1.46	1.72
Ion Ratio	none	-9999			1.03	1.03
Total Dissolved Solids (calculated)	mg/L	-9999			194	196
Conductivity (calculated)	uS/cm	-9999			391	396

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			S	ample Number	7	8
				Sample Name	A395881_1 hr	A395881_6 hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	- Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking V	Vater - Reg O.169_03			Sample Date	11/09/2024	11/09/2024
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Langeliers Index 4° C	@ 4° C	-9999			-0.11	-0.25
Saturation pH 4°C	pHs @ 4°C	-9999			8.01	8.00
/licrobiology						
Total Coliform	cfu/100mL	0		0	1	1
E. Coli	cfu/100mL	0		0	0	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			2	6
Other (ORP)						
рН	No unit	0.05	8.5		7.90	7.75
Chloride	mg/L	1	250		< 1	< 1
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			0.002	< 0.002

EXCEEDANCE SUMMARY

Iron

					ODWS_AO_OG / WATER / Table 4 - Drinking Water -	ODWS_MAC / WATER / Table 1,2 and 3 -
					Reg O.169_03	Drinking Water -
						Reg O.169_03
	Parameter	Method	Units	Result	L1	L2
A39	95881_1 hr					
	Total Coliform	OMOE	cfu/100mL	1		0
		MICROMFDC-E3407A				
	Turbidity	SM 2130	NTU	2.0		1
	Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	187	100	
	Iron	SM 3030/EPA 200.8	mg/L	0.438	0.3	
A3 9	95881_6 hr					
	Total Coliform	ОМОЕ	cfu/100mL	1		0
		MICROMFDC-E3407A				
	Colour	SM 2120	TCU	6	5	
	Turbidity	SM 2130	NTU	1.4		1
	Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	191	100	

mg/L

0.398

SM 3030/EPA 200.8

20240918 7 / 20

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0237-SEP24	mg/L as	2	< 2	0	20	104	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0117-SEP24	mg/L	0.04	<0.04	2	10	98	90	110	101	75	125

20240918 8 / 20

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch				Matrix Spike / Ref.							
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO8015-SEP24	mg/L	1	<1	ND	20	98	80	120	99	75	125
Sulphate	DIO8015-SEP24	mg/L	2	<2	ND	20	106	80	120	102	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike Recovery	Recovery Limits (%)		Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Bromide	DIO0243-SEP24	mg/L	0.3	<0.3	ND	20	93	90	110	76	75	125
Nitrite (as N)	DIO0243-SEP24	mg/L	0.03	<0.03	6	20	96	90	110	93	75	125
Nitrate (as N)	DIO0243-SEP24	mg/L	0.06	<0.06	0	20	97	90	110	NV	75	125

20240918 9 / 20

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch			Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0116-SEP24	mg/L	1	<1	7	20	98	90	110	99	75	125
Total Organic Carbon	SKA0116-SEP24	mg/L	1	<1	7	20	98	90	110	99	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method Blank	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike Recovery	Recover	-	Spike Recovery	Recover	ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Carbonate	EWL0237-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0237-SEP24	mg/L as CaCO3	2	< 2	0	10	NA	90	110	NA		
ОН	EWL0237-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

20240918 10 / 20

QC SUMMARY

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0321-SEP24	TCU	3	< 3	2	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0237-SEP24	uS/cm	2	2	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference		Blank RPI	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)	
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Fluoride	EWL0297-SEP24	mg/L	0.06	<0.06	0	10	101	90	110	99	75	125

20240918 11 / 20

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch Reference	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	-
				Blank	RPD	AC (V)	Spike		ry Limits %)	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0020-SEP24	mg/L	0.00001	< 0.00001	ND	20	115	80	120	125	70	130

20240918 12 / 20

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0139-SEP24	mg/L	0.00005	<0.00005	ND	20	97	90	110	75	70	130
Aluminum (total)	EMS0139-SEP24	mg/L	0.001	<0.001	ND	20	91	90	110	114	70	130
Arsenic (total)	EMS0139-SEP24	mg/L	0.0002	<0.0002	ND	20	101	90	110	100	70	130
Barium (total)	EMS0139-SEP24	mg/L	0.00008	<0.00008	ND	20	101	90	110	104	70	130
Beryllium (total)	EMS0139-SEP24	mg/L	0.000007	<0.000007	ND	20	102	90	110	100	70	130
Boron (total)	EMS0139-SEP24	mg/L	0.002	<0.002	8	20	99	90	110	101	70	130
Bismuth (total)	EMS0139-SEP24	mg/L	0.00001	<0.00001	ND	20	97	90	110	70	70	130
Calcium (total)	EMS0139-SEP24	mg/L	0.01	<0.01	14	20	100	90	110	101	70	130
Cadmium (total)	EMS0139-SEP24	mg/L	0.000003	<0.000003	ND	20	98	90	110	101	70	130
Cobalt (total)	EMS0139-SEP24	mg/L	0.000004	<0.000004	ND	20	102	90	110	99	70	130
Chromium (total)	EMS0139-SEP24	mg/L	0.00008	<0.00008	ND	20	98	90	110	97	70	130
Copper (total)	EMS0139-SEP24	mg/L	0.001	<0.001	ND	20	101	90	110	99	70	130
Iron (total)	EMS0139-SEP24	mg/L	0.007	<0.007	ND	20	103	90	110	100	70	130
Potassium (total)	EMS0139-SEP24	mg/L	0.009	<0.009	6	20	100	90	110	97	70	130
Magnesium (total)	EMS0139-SEP24	mg/L	0.001	<0.001	10	20	99	90	110	96	70	130
Manganese (total)	EMS0139-SEP24	mg/L	0.00001	<0.00001	ND	20	102	90	110	103	70	130
Molybdenum (total)	EMS0139-SEP24	mg/L	0.0004	<0.0004	ND	20	101	90	110	94	70	130
Sodium (total)	EMS0139-SEP24	mg/L	0.01	<0.01	6	20	100	90	110	100	70	130
Nickel (total)	EMS0139-SEP24	mg/L	0.0001	<0.0001	ND	20	100	90	110	102	70	130
Lead (total)	EMS0139-SEP24	mg/L	0.00009	<0.00009	ND	20	100	90	110	99	70	130

20240918 13 / 20

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery	Recove	ry Limits %)
			0.002 ×0.003 NI		(70)	(%)	Low	High	(%)	Low	High	
Phosphorus (total)	EMS0139-SEP24	mg/L	0.003	<0.003	ND	20	98	90	110	NV	70	130
Antimony (total)	EMS0139-SEP24	mg/L	0.0009	<0.0009	ND	20	107	90	110	125	70	130
Selenium (total)	EMS0139-SEP24	mg/L	0.00004	<0.00004	ND	20	99	90	110	91	70	130
Silicon (total)	EMS0139-SEP24	mg/L	0.02	<0.02	ND	20	103	90	110	NV	70	130
Tin (total)	EMS0139-SEP24	mg/L	0.00006	<0.00006	ND	20	101	90	110	NV	70	130
Strontium (total)	EMS0139-SEP24	mg/L	0.00008	<0.00008	7	20	101	90	110	101	70	130
Titanium (total)	EMS0139-SEP24	mg/L	0.0001	<0.0001	ND	20	99	90	110	NV	70	130
Thallium (total)	EMS0139-SEP24	mg/L	0.000005	<0.000005	ND	20	97	90	110	84	70	130
Uranium (total)	EMS0139-SEP24	mg/L	0.000002	<0.000002	ND	20	99	90	110	101	70	130
Vanadium (total)	EMS0139-SEP24	mg/L	0.00001	<0.00001	ND	20	102	90	110	104	70	130
Zinc (total)	EMS0139-SEP24	mg/L	0.002	<0.002	ND	20	94	90	110	94	70	130

20240918 14 / 20

Microbiology

Method: SM 9215A | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Heterotrophic Plate Count (HPC)	BAC9202-SEP24	cfu/1mL	-	ACCEPTED	ACCEPTE							
E. Coli	BAC9202-SEP24	cfu/100mL	-	ACCEPTED	D ACCEPTE							
Total Coliform	BAC9202-SEP24	cfu/100mL	-	ACCEPTED	D ACCEPTE							
					D							

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref			
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recover	-		
						(%)	Recovery (%)	Low	High	(%)	Low	High		
рН	EWL0237-SEP24	No unit	0.05	NA	0		100			NA				

20240918 15 / 20

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
					(%)	Recovery (%)	Low	High	(%)	Low	High	
4AAP-Phenolics	SKA0112-SEP24	mg/L	0.002	<0.002	ND	10	104	80	120	89	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	ī.
	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphide	SKA0108-SEP24	mg/L	0.02	<0.02	ND	20	96	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0246-SEP24	mg/L	2	< 2	0	10	92	90	110	NA		

20240918 16 / 20

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0138-SEP24	mg/L	0.05	<0.05	ND	10	98	90	110	79	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		N	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Turbidity	EWL0256-SEP24	NTU	0.10	< 0.10	0	10	100	90	110	NA		

20240918 17 / 20

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20240918 18 / 20

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20240918 19 / 20

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

No: 039486

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Laboratory Information Section - Lab use only Siri Romard Received By (signature): Cooling Agent Present: Yes No Type: 1CF
Temperature Upon Receipt (°C) 1. , , 10 Custody Seal Present: Yes Custody Seal Intact: Yes No INVOICE INFORMATION 11056 (same as Report Information) P.O. #: Quotation #: 11056 Site Location/ID: Company Project #: Address: 150 JAMESON DR. TURNAROUND TIME (TAT) REQUIRED Contact: TAT's are quoted in business days (exclude statutory holidays & weekends). PETERBOROUGH, ON Phone: 705-868-1691 Regular TAT (5-7days) Samples received after 6pm or on weekends: TAT begins next business day RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Email: rbolvin@dmvills.com | Email: accounts@dmvills, com Specify Due Date: WITH SGS DRINKING WATER CHAIN OF CUSTODY + Costic Qamwills . com REGULATIONS **ANALYSIS REQUESTED** PHC M & I SVOC PCB VOC Pest Other (please specify) SPLPITCLP O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: Table 1 Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Sanitary MMER Table 2 Ind/Com Coarse PWQO Storm tests Table 3 Agri/Other Medium/Fine CCME Other: Municipality: MISA Table Metals ODWS Not Reportable *See note Soil Volume <350m3 >350m3 Full Metals Suite COMMENTS: □voc Field Filtered (Y/N) RECORD OF SITE CONDITION (RSC) YES 1,4-**□**РСВ ICP Metals only Cr,Co,Cu,Pb,Mo,Ni,Se,Ag,T BTEX OCP Pesticides BTEX only DATE # OF MATRIX SAMPLE IDENTIFICATION VOCs SVOCS SAMPLED SAMPLED BOTTLES F1-F4 PCBs 10:26 Am GW 9 10 Observations/Comments/Special Instructions Sampled By (NAME): Signature: (mm/dd/vv) Pink Copy - Client Relinquished by (NAME):

CA14338-SEP24 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	D.M. Wills -Peterborough	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	705-652-2143
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	brad.moore@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14338-SEP24
Project	11056	Received	09/10/2024
Order Number		Approved	09/17/2024
Samples	Ground Water (2)	Report Number	CA14338-SEP24 R1
		Date Reported	09/17/2024

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 5 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 039485

raised RL for tag#8 NO2 due to SM

NH3 > TKN due to sample matrix

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mod

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

> Member of the SGS Group (SGS SA) 1/20

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-18
Legend	19
Annexes	20

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			s	ample Number	7	8
				Sample Name	A395882-1hr	A395882-7hr
= ODWS_AO_OG / WATER / Table 4 - Drink	king Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
= ODWS_MAC / WATER / Table 1,2 and 3 -	- Drinking Water - Reg O.169_03			Sample Date	09/09/2024	09/09/2024
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry						
UV Transmittance	%T	·			60.7	65.2
Alkalinity	mg/L as CaCO3	2	500		324	292
Bicarbonate	mg/L as CaCO3	2			324	292
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		8	8
Conductivity	uS/cm	2			1960	2280
Total Suspended Solids	mg/L	2			26	21
Turbidity	NTU	0.10	5	1	39	16
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			1.43	2.16
Ammonia+Ammonium (N)	as N mg/L	0.04			2.41	2.62
Dissolved Organic Carbon	mg/L	1	5		4	4
Total Organic Carbon	mg/L	1			4	4

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			S	ample Number	7	8
				Sample Name	A395882-1hr	A395882-7hr
= ODWS_AO_OG / WATER / Table 4 - Drinking Wa	ater - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
= ODWS_MAC / WATER / Table 1,2 and 3 - Drinkin	ng Water - Reg O.169_03			Sample Date	09/09/2024	09/09/2024
Parameter	Units	RL	L1	L2	Result	Result
letals and Inorganics						
Fluoride	mg/L	0.06		1.5	0.37	0.35
Bromide	mg/L	0.3			6.1	7.7
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.3↑
Nitrate (as N)	as N mg/L	0.06		10	< 0.06	< 0.06
Sulphate	mg/L	2	500		< 2	< 2
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		422	513
Aluminum (total)	mg/L	0.001	0.1		0.085	0.045
Arsenic (total)	mg/L	0.0002		0.01	0.0003	0.0003
Boron (total)	mg/L	0.002		5	0.250	0.259
Barium (total)	mg/L	0.00008		1	0.573	0.752
Beryllium (total)	mg/L	0.000007			< 0.000007	< 0.000007
Bismuth (total)	mg/L	0.00001			< 0.00001	< 0.00001
Cobalt (total)		0.000004			0.000213	0.000130
Calcium (total)	mg/L	0.01			94.7	116
Cadmium (total)		0.000003		0.005	0.000003	0.000004
Copper (total)	mg/L	0.001	1		0.003	0.001
Chromium (total)	mg/L	0.00008		0.05	0.00053	0.00047
Iron (total)	mg/L	0.007	0.3	0.00	4.31	1.77
Potassium (total)	mg/L	0.009	0.0		5.57	6.34
Magnesium (total)	mg/L	0.001	0.05		45.1	54.6
Manganese (total)	mg/L	0.00001	0.05		0.0730	0.0447

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			S	ample Number	7	8
				Sample Name	A395882-1hr	A395882-7hr
= ODWS_AO_OG / WATER / Table 4 - Drinking	Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
ODWS_MAC / WATER / Table 1,2 and 3 - Drir	nking Water - Reg O.169_03			Sample Date	09/09/2024	09/09/2024
Parameter	Units	RL	L1	L2	Result	Result
letals and Inorganics (continued)						
Molybdenum (total)	mg/L	0.0004			0.0049	0.0052
Nickel (total)	mg/L	0.0001			0.0006	0.0004
Sodium (total)	mg/L	0.01	200	20	224	261
Phosphorus (total)	mg/L	0.003			0.054	0.054
Lead (total)	mg/L	0.00009		0.01	0.00050	0.00011
Silicon (total)	mg/L	0.02			5.81	5.96
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			4.68	6.02
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			0.00015	< 0.00006
Titanium (total)	mg/L	0.0001			0.0054	0.0035
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	0.00007	0.00005
Uranium (total)	mg/L	0.000002		0.02	0.000012	0.000007
Vanadium (total)	mg/L	0.00001			0.00027	0.00022
Zinc (total)	mg/L	0.002	5		0.003	< 0.002
Cation sum	meq/L	-9999			18.80	22.17
Anion Sum	meq/L	-9999			19.87	22.26
Anion-Cation Balance	% difference	-9999			-2.76	-0.20
Ion Ratio	none	-9999			0.95	1.00
Total Dissolved Solids (calculated)	mg/L	-9999			1036	1192
Conductivity (calculated)	uS/cm	-9999			1933	2221

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			s	ample Number	7	8
				Sample Name	A395882-1hr	A395882-7hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water -	Reg O.169_03			Sample Matrix	Ground Water	Ground Water
.2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	ater - Reg O.169_03			Sample Date	09/09/2024	09/09/2024
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Langeliers Index 4° C	@ 4° C	-9999			0.48	0.44
Saturation pH 4°C	pHs @ 4°C	-9999			7.52	7.49
Microbiology						
Total Coliform	cfu/100mL	0		0	1	3
E. Coli	cfu/100mL	0		0	1	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			6900	5200
Other (ORP)						
рН	No unit	0.05	8.5		8.00	7.93
Chloride	mg/L	1	250		470	580
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenois						
4AAP-Phenolics	mg/L	0.002			0.002	0.003

EXCEEDANCE SUMMARY

				ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.169_03	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg O.169_03
Parameter	Method	Units	Result	L1	L2
395882-1hr					
E.Coli	ОМОЕ	cfu/100mL	1		0
	MICROMFDC-E3407A				
Total Coliform	OMOE	cfu/100mL	1		0
	MICROMFDC-E3407A				
Colour	SM 2120	TCU	8	5	
Turbidity	SM 2130	NTU	39	5	1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	422	100	
Iron	SM 3030/EPA 200.8	mg/L	4.31	0.3	
Manganese	SM 3030/EPA 200.8	mg/L	0.0730	0.05	
Sodium	SM 3030/EPA 200.8	mg/L	224	200	20
Chloride	US EPA 325.2	mg/L	470	250	

Total Coliform	OMOE	cfu/100mL	3		0
	MICROMFDC-E3407A				
Colour	SM 2120	TCU	8	5	
Turbidity	SM 2130	NTU	16	5	1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	513	100	
Iron	SM 3030/EPA 200.8	mg/L	1.77	0.3	
Sodium	SM 3030/EPA 200.8	mg/L	261	200	20
Chloride	US EPA 325.2	mg/L	580	250	

7 / 20 20240917

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
Alkalinity	EWL0177-SEP24	mg/L as	2	< 2	0	20	98	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch Units Reference	s RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
				Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0090-SEP24	mg/L	0.04	<0.04	1	10	100	90	110	95	75	125

20240917 8 / 20

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
							Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO8007-SEP24	mg/L	1	<1	ND	20	96	80	120	100	75	125
Sulphate	DIO8007-SEP24	mg/L	2	<2	3	20	102	80	120	97	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method Blank	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
Bromide	DIO0183-SEP24	mg/L	0.3	<0.3	1	20	98	90	110	NV	75	125
Nitrate (as N)	DIO0183-SEP24	mg/L	0.06	<0.06	ND	20	97	90	110	100	75	125
Bromide	DIO0187-SEP24	mg/L	0.3	<0.3	0	20	100	90	110	NV	75	125
Nitrite (as N)	DIO0187-SEP24	mg/L	0.03	<0.03	ND	20	97	90	110	78	75	125
Nitrate (as N)	DIO0187-SEP24	mg/L	0.06	<0.06	ND	20	98	90	110	99	75	125
Nitrite (as N)	DIO0197-SEP24	mg/L	0.03	<0.03	ND	20	97	90	110	99	75	125

20240917 9 / 20

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0088-SEP24	mg/L	1	<1	0	20	91	90	110	98	75	125
Total Organic Carbon	SKA0088-SEP24	mg/L	1	<1	0	20	91	90	110	98	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recover	-	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Carbonate	EWL0177-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0177-SEP24	mg/L as CaCO3	2	< 2	0	10	NA	90	110	NA		
OH	EWL0177-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

20240917 10 / 20

QC SUMMARY

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0321-SEP24	TCU	3	< 3	2	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference		Blank		RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0177-SEP24	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0190-SEP24	mg/L	0.06	<0.06	0	10	100	90	110	96	75	125

20240917 11 / 20

CA14338-SEP24 R1

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (00)	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0015-SEP24	mg/L	0.00001	< 0.00001	ND	20	86	80	120	129	70	130

20240917 12 / 20

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	-	Spike Recovery		ery Limits
						((%)	Low	High	(%)	Low	High
Silver (total)	EMS0090-SEP24	mg/L	0.00005	<0.00005	ND	20	101	90	110	89	70	130
Aluminum (total)	EMS0090-SEP24	mg/L	0.001	<0.001	16	20	108	90	110	102	70	130
Arsenic (total)	EMS0090-SEP24	mg/L	0.0002	<0.0002	ND	20	103	90	110	101	70	130
Barium (total)	EMS0090-SEP24	mg/L	0.00008	<0.00008	2	20	103	90	110	97	70	130
Beryllium (total)	EMS0090-SEP24	mg/L	0.000007	<0.000007	ND	20	103	90	110	97	70	130
Boron (total)	EMS0090-SEP24	mg/L	0.002	<0.002	0	20	100	90	110	90	70	130
Bismuth (total)	EMS0090-SEP24	mg/L	0.00001	<0.00001	ND	20	99	90	110	80	70	130
Calcium (total)	EMS0090-SEP24	mg/L	0.01	<0.01	5	20	101	90	110	97	70	130
Cadmium (total)	EMS0090-SEP24	mg/L	0.000003	<0.000003	ND	20	100	90	110	104	70	130
Cobalt (total)	EMS0090-SEP24	mg/L	0.000004	<0.000004	3	20	102	90	110	92	70	130
Chromium (total)	EMS0090-SEP24	mg/L	0.00008	<0.00008	3	20	103	90	110	95	70	130
Copper (total)	EMS0090-SEP24	mg/L	0.001	<0.001	ND	20	103	90	110	91	70	130
Iron (total)	EMS0090-SEP24	mg/L	0.007	<0.007	3	20	107	90	110	75	70	130
Potassium (total)	EMS0090-SEP24	mg/L	0.009	<0.009	4	20	104	90	110	98	70	130
Magnesium (total)	EMS0090-SEP24	mg/L	0.001	<0.001	5	20	105	90	110	97	70	130
Manganese (total)	EMS0090-SEP24	mg/L	0.00001	<0.00001	2	20	106	90	110	96	70	130
Molybdenum (total)	EMS0090-SEP24	mg/L	0.0004	<0.0004	3	20	103	90	110	96	70	130
Sodium (total)	EMS0090-SEP24	mg/L	0.01	<0.01	5	20	105	90	110	99	70	130
Nickel (total)	EMS0090-SEP24	mg/L	0.0001	<0.0001	ND	20	104	90	110	99	70	130
Lead (total)	EMS0090-SEP24	mg/L	0.00009	<0.00009	ND	20	102	90	110	95	70	130

20240917 13 / 20

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery	Recove	ry Limits %)
					ND	(70)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0090-SEP24	mg/L	0.003	<0.003	ND	20	102	90	110	NV	70	130
Antimony (total)	EMS0090-SEP24	mg/L	0.0009	<0.0009	ND	20	110	90	110	128	70	130
Selenium (total)	EMS0090-SEP24	mg/L	0.00004	<0.00004	ND	20	103	90	110	108	70	130
Silicon (total)	EMS0090-SEP24	mg/L	0.02	<0.02	2	20	100	90	110	NV	70	130
Tin (total)	EMS0090-SEP24	mg/L	0.00006	<0.00006	ND	20	103	90	110	NV	70	130
Strontium (total)	EMS0090-SEP24	mg/L	0.00008	<0.00008	3	20	105	90	110	95	70	130
Titanium (total)	EMS0090-SEP24	mg/L	0.0001	<0.0001	4	20	108	90	110	NV	70	130
Thallium (total)	EMS0090-SEP24	mg/L	0.000005	<0.000005	ND	20	99	90	110	94	70	130
Uranium (total)	EMS0090-SEP24	mg/L	0.000002	<0.000002	ND	20	101	90	110	98	70	130
Vanadium (total)	EMS0090-SEP24	mg/L	0.00001	<0.00001	6	20	103	90	110	104	70	130
Zinc (total)	EMS0090-SEP24	mg/L	0.002	<0.002	ND	20	101	90	110	105	70	130

20240917 14 / 20

QC SUMMARY

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	ry Limits 6)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
E. Coli	BAC9135-SEP24	cfu/100mL	-	ACCEPTED	ACCEPTE D							
Heterotrophic Plate Count (HPC)	BAC9135-SEP24	cfu/1mL	-	ACCEPTED	ACCEPTE D							
Total Coliform	BAC9135-SEP24	cfu/100mL	-	ACCEPTED	ACCEPTE D							

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

	,											
Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	latrix Spike / Ref	
	Reference			Blank	RPD	RPD AC (%)		Recove	-	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0177-SEP24	No unit	0.05	NA	0		100			NA		

20240917 15 / 20

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0097-SEP24	mg/L	0.002	<0.002	4	10	100	80	120	79	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	f.
	Reference			Blank	RPD	RPD AC (%)			ry Limits %)	Spike Recovery		ery Limits %)
						Recovery (%)	Low	High	(%)	Low	High	
Sulphide	SKA0093-SEP24	mg/L	0.02	<0.02	ND	20	99	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Suspended Solids	EWL0180-SEP24	mg/L	2	< 2	0	10	96	90	110	NA			

20240917 16 / 20

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)	Spike Recovery	Recover	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0103-SEP24	mg/L	0.05	<0.05	1	10	99	90	110	94	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		f.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0188-SEP24	NTU	0.10	< 0.10	0	10	100	90	110	NA		

20240917 17 / 20

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20240917 18 / 20

l l

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20240917 19 / 20

Request for Laboratory Services and CHAIN OF CUSTODY

No. 039485

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section - Lab use only Received By (signature): Cooling Agent Present: Yes No Type: Ul
Temperature Upon Receipt (°C) 3, 5, LAB LIMS #: CA 14338 - Sup 24 Custody Seal Present: Yes Custody Seal Intact: Yes No INVOICE INFORMATION Company: DM WILLS P.O.#: 11056 (same as Report Information) Quotation #: Contact: RALF BOLVIN 11056 Site Location/ID: Project #: Address: 150 JAMESON DRIVE TURNAROUND TIME (TAT) REQUIRED Contact TAT's are quoted in business days (exclude statutory holidays & weekends). PETERBOROUGH, ON Phone: 705-868-169 Regular TAT (5-7days) Address: Samples received after 6pm or on weekends: TAT begins next business day RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Email: Occounts Edmwills, com Specify Due Date: Email: rbolvin@dnwills.com WITH SGS DRINKING WATER CHAIN OF CUSTODY Costic@dmwills.com REGULATIONS **ANALYSIS REQUESTED** SVOC PCB PHC VOC Pest Other (please specify) SPLP TCLP M & I O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: Table 1 Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Sanitary Ind/Com Coarse Table 2 **TPWQO** MMER Storm tests Table 3 Agri/Other Medium/Fine CCME Other: Municipality: Sewer Use:
Specify pkg:
Water Characterization Pkg
General Exended MISA Table Appx. Metals ODWS Not Reportable *See note Metals & Inorganics inclorvi, CN, Hg pH, (B(HWS), EC, SAR (Cl. Na-water) Dvoc COMMENTS: □voc Filtered (Y/N) Full Metals Suite RECORD OF SITE CONDITION (RSC) YES 1,4-□ PCB BTEX ICP Metals of □B(a)f OCP Pesticides DATE TIME # OF DABN SAMPLE IDENTIFICATION MATRIX DABN VOCs SAMPLED SAMPLED BOTTLES F1-F4 BTEX Field A395882-Ihr A395882-Ihr GW GW 5 12 Observations/Comments/Special Instructions

Sampled By (NAME):

Signature:

(mm/dd/yy) Pink Copy - Client

CA15109-SEP24 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	.s
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA15109-SEP24
Project	11056	Received	09/11/2024
Order Number		Approved	09/17/2024
Samples	Ground Water (2)	Report Number	CA15109-SEP24 R1
		Date Reported	09/17/2024

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 6 degrees C

Cooling Agent Present: yes Custody Seal Present: yes

Chain of Custody Number: 039487

NO2 RL raised due to sample matrix

NH3 > TKN due to sample matrix

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

www.sgs.com

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-19
Legend	20
Annexes	21

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

			_		_	_
MATRIX: WATER			S	ample Number	7	8
				Sample Name	A395883_1hr	A395883_7hr
= ODWS_AO_OG / WATER / Table 4 - Drink	king Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
= ODWS_MAC / WATER / Table 1,2 and 3 -	- Drinking Water - Reg O.169_03			Sample Date	10/09/2024	10/09/2024
Parameter	Units	RL	L1	L2	Result	Result
eneral Chemistry						
UV Transmittance	%T				44.8	58.3
Alkalinity	mg/L as CaCO3	2	500		273	295
Bicarbonate	mg/L as CaCO3	2			273	295
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		8	8
Conductivity	uS/cm	2			2190	2430
Total Suspended Solids	mg/L	2			45	13
Turbidity	NTU	0.10	5	1	65	37
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			1.62	1.47
Ammonia+Ammonium (N)	as N mg/L	0.04			3.72	3.76
Dissolved Organic Carbon	mg/L	1	5		5	5
Total Organic Carbon	mg/L	1			5	5

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			S	Sample Number	7	8
				Sample Name	A395883_1hr	A395883_7hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	ter - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	g Water - Reg O.169_03			Sample Date	10/09/2024	10/09/2024
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics						
Fluoride	mg/L	0.06		1.5	0.23	0.23
Bromide	mg/L	0.3			7.3	8.1
Nitrite (as N)	as N mg/L	0.03		1	< 0.3↑	< 0.3↑
Nitrate (as N)	as N mg/L	0.06		10	< 0.06	< 0.06
Sulphate	mg/L	2	500		< 2	< 2
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		595	642
Aluminum (total)	mg/L	0.001	0.1		0.167	0.059
Arsenic (total)	mg/L	0.0002		0.01	0.0024	0.0016
Boron (total)	mg/L	0.002		5	0.156	0.181
Barium (total)	mg/L	0.00008		1	0.468	0.525
Beryllium (total)	mg/L	0.000007			0.000018	< 0.000007
Bismuth (total)	mg/L	0.00001			< 0.00001	< 0.00001
Cobalt (total)	mg/L	0.000004			0.000295	0.000107
Calcium (total)	mg/L	0.01			144	156
Cadmium (total)		0.000003		0.005	0.000016	0.000007
Copper (total)	mg/L	0.001	1		0.002	< 0.001
Chromium (total)	mg/L	0.00008		0.05	0.00059	0.00031
Iron (total)	mg/L	0.007	0.3		8.42	3.88
Potassium (total)	mg/L	0.009			3.83	4.22
Magnesium (total)	mg/L	0.001			57.0	61.6
Manganese (total)			0.05		0.185	0.132
ivialiganese (total)	ing/L	0.00001	0.03		0.100	0.132

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

					-	•
MATRIX: WATER			;	Sample Number	7	8
				Sample Name	A395883_1hr	A395883_7hr
= ODWS_AO_OG / WATER / Table 4 - Drinking	Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
= ODWS_MAC / WATER / Table 1,2 and 3 - Drin				Sample Date	10/09/2024	10/09/2024
Parameter	Units	RL	L1	L2	Result	Result
letals and Inorganics (continued)						
Molybdenum (total)	mg/L	0.0004			0.0039	0.0048
Nickel (total)	mg/L	0.0001			0.0008	0.0002
Sodium (total)	mg/L	0.01	200	20	218	242
Phosphorus (total)	mg/L	0.003			0.155	0.131
Lead (total)	mg/L	0.00009		0.01	0.00433	< 0.00009
Silicon (total)	mg/L	0.02			6.89	6.82
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			4.12	4.68
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			< 0.00006	< 0.00006
Titanium (total)	mg/L	0.0001			0.0075	0.0074
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	0.00005	< 0.00004
Uranium (total)	mg/L	0.000002		0.02	0.000037	0.000005
Vanadium (total)	mg/L	0.00001			0.00046	0.00020
Zinc (total)	mg/L	0.002	5		0.003	< 0.002
Cation sum	meq/L	-9999			22.28	24.03
Anion Sum	meq/L	-9999			21.65	23.74
Anion-Cation Balance	% difference	-9999			1.44	0.59
Ion Ratio	none	-9999			1.03	1.01
Total Dissolved Solids (calculated)	mg/L	-9999			1158	1270
,						
Conductivity (calculated)	uS/cm	-9999			2196	2389

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			S	Sample Number	7	8
				Sample Name	A395883_1hr	A395883_7hr
.1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	- Reg O.169_03			Sample Matrix	Ground Water	Ground Water
_2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	Vater - Reg O.169_03			Sample Date	10/09/2024	10/09/2024
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Langeliers Index 4° C	@ 4° C	-9999			0.37	0.37
Saturation pH 4°C	pHs @ 4°C	-9999			7.42	7.36
Microbiology						
Total Coliform	cfu/100mL	0		0	620	17
E. Coli	cfu/100mL	0		0	40	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			4000	125
Other (ORP)						
рН	No unit	0.05	8.5		7.79	7.73
Chloride	mg/L	1	250		570	630
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			0.027	0.016

EXCEEDANCE SUMMARY

| ODWS_AO_OG / ODWS_MAC / | WATER / - - Table 4 | WATER / - - Table 4 | WATER / - - Table 4 | - Drinking Water - | 1,2 and 3 - | Reg O.169_03 | Drinking Water - | Reg O.169_03 | Parameter | Reg O.169_03 | L1 | L2 | L2 |

A395883_1hr

E.Coli	OMOE	cfu/100mL	40		0
	MICROMFDC-E3407A				
Total Coliform	OMOE	cfu/100mL	620		0
	MICROMFDC-E3407A				
Colour	SM 2120	TCU	8	5	
Turbidity	SM 2130	NTU	65	5	1
Aluminum	SM 3030/EPA 200.8	mg/L	0.167	0.1	
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	595	100	
Iron	SM 3030/EPA 200.8	mg/L	8.42	0.3	
Manganese	SM 3030/EPA 200.8	mg/L	0.185	0.05	
Sodium	SM 3030/EPA 200.8	mg/L	218	200	20
Chloride	US EPA 325.2	mg/L	570	250	

A395883_7hr

Total Coliform	OMOE	cfu/100mL	17		0
	MICROMFDC-E3407A				
Colour	SM 2120	TCU	8	5	
Turbidity	SM 2130	NTU	37	5	1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	642	100	
Iron	SM 3030/EPA 200.8	mg/L	3.88	0.3	
Manganese	SM 3030/EPA 200.8	mg/L	0.132	0.05	
Sodium	SM 3030/EPA 200.8	mg/L	242	200	20
Chloride	US EPA 325.2	mg/L	630	250	

20240917 8 / 21

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	nits RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
Alkalinity	EWL0197-SEP24	mg/L as	2	< 2	1	20	106	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0106-SEP24	mg/L	0.04	<0.04	3	10	100	90	110	101	75	125

20240917 9 / 21

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO8008-SEP24	mg/L	1	<1	0	20	98	80	120	82	75	125
Sulphate	DIO8011-SEP24	mg/L	2	<2	ND	20	104	80	120	101	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)		Low	High	(%)	Low	High
Bromide	DIO0204-SEP24	mg/L	0.3	<0.3	ND	20	98	90	110	84	75	125
Nitrate (as N)	DIO0204-SEP24	mg/L	0.06	<0.06	ND	20	97	90	110	97	75	125
Bromide	DIO0206-SEP24	mg/L	0.3	<0.3	1	20	98	90	110	NV	75	125
Nitrate (as N)	DIO0206-SEP24	mg/L	0.06	<0.06	ND	20	97	90	110	101	75	125
Nitrite (as N)	DIO0239-SEP24	mg/L	0.03	<0.03	ND	20	97	90	110	102	75	125

20240917 10 / 21

QC SUMMARY

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	đ.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0104-SEP24	mg/L	1	<1	1	20	91	90	110	108	75	125
Total Organic Carbon	SKA0104-SEP24	mg/L	1	<1	1	20	91	90	110	108	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	:
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits 6)	Spike Recovery	Recove	ry Limits 6)
						(70)	(%)	Low	High	(%)	Low	High
Carbonate	EWL0197-SEP24	mg/L as	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0197-SEP24	mg/L as CaCO3	2	< 2	1	10	NA	90	110	NA		
ОН	EWL0197-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

20240917 11 / 21

QC SUMMARY

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Colour	EWL0321-SEP24	TCU	3	< 3	2	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0197-SEP24	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD AC (%)	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)	
				(%)	Recovery (%)	Low	High	(%)	Low	High		
Fluoride	EWL0215-SEP24	mg/L	0.06	<0.06	2	10	97	90	110	115	75	125

20240917 12 / 21

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref		
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recove	=
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0017-SEP24	mg/L	0.00001	< 0.00001	ND	20	100	80	120	129	70	130

20240917 13 / 21

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(,	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0096-SEP24	mg/L	0.00005	<0.00005	ND	20	95	90	110	71	70	130
Aluminum (total)	EMS0096-SEP24	mg/L	0.001	<0.001	1	20	103	90	110	100	70	130
Arsenic (total)	EMS0096-SEP24	mg/L	0.0002	<0.0002	4	20	98	90	110	92	70	130
Barium (total)	EMS0096-SEP24	mg/L	0.00008	<0.00008	1	20	98	90	110	90	70	130
Beryllium (total)	EMS0096-SEP24	mg/L	0.000007	<0.000007	ND	20	103	90	110	97	70	130
Boron (total)	EMS0096-SEP24	mg/L	0.002	<0.002	4	20	103	90	110	97	70	130
Bismuth (total)	EMS0096-SEP24	mg/L	0.00001	<0.00001	ND	20	96	90	110	76	70	130
Calcium (total)	EMS0096-SEP24	mg/L	0.01	<0.01	1	20	105	90	110	102	70	130
Cadmium (total)	EMS0096-SEP24	mg/L	0.000003	<0.000003	0	20	101	90	110	102	70	130
Cobalt (total)	EMS0096-SEP24	mg/L	0.000004	<0.000004	ND	20	98	90	110	90	70	130
Chromium (total)	EMS0096-SEP24	mg/L	0.00008	<0.00008	ND	20	102	90	110	97	70	130
Copper (total)	EMS0096-SEP24	mg/L	0.001	<0.001	1	20	101	90	110	97	70	130
Iron (total)	EMS0096-SEP24	mg/L	0.007	<0.007	ND	20	108	90	110	100	70	130
Potassium (total)	EMS0096-SEP24	mg/L	0.009	<0.009	0	20	102	90	110	93	70	130
Magnesium (total)	EMS0096-SEP24	mg/L	0.001	<0.001	0	20	106	90	110	100	70	130
Manganese (total)	EMS0096-SEP24	mg/L	0.00001	<0.00001	1	20	100	90	110	92	70	130
Sodium (total)	EMS0096-SEP24	mg/L	0.01	<0.01	0	20	107	90	110	99	70	130
Nickel (total)	EMS0096-SEP24	mg/L	0.0001	<0.0001	3	20	100	90	110	84	70	130
Lead (total)	EMS0096-SEP24	mg/L	0.00009	<0.00009	ND	20	104	90	110	92	70	130
Phosphorus (total)	EMS0096-SEP24	mg/L	0.003	<0.003	ND	20	106	90	110	NV	70	130

20240917 14 / 21

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	y Limits 6)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Antimony (total)	EMS0096-SEP24	mg/L	0.0009	<0.0009	ND	20	103	90	110	97	70	130
Selenium (total)	EMS0096-SEP24	mg/L	0.00004	<0.00004	5	20	101	90	110	87	70	130
Silicon (total)	EMS0096-SEP24	mg/L	0.02	<0.02	0	20	106	90	110	NV	70	130
Tin (total)	EMS0096-SEP24	mg/L	0.00006	<0.00006	ND	20	108	90	110	NV	70	130
Strontium (total)	EMS0096-SEP24	mg/L	0.00008	<0.00008	2	20	100	90	110	94	70	130
Titanium (total)	EMS0096-SEP24	mg/L	0.0001	<0.0001	ND	20	106	90	110	NV	70	130
Thallium (total)	EMS0096-SEP24	mg/L	0.000005	<0.000005	ND	20	96	90	110	90	70	130
Uranium (total)	EMS0096-SEP24	mg/L	0.000002	<0.000002	3	20	97	90	110	89	70	130
Vanadium (total)	EMS0096-SEP24	mg/L	0.00001	<0.00001	6	20	101	90	110	91	70	130
Zinc (total)	EMS0096-SEP24	mg/L	0.002	<0.002	5	20	100	90	110	90	70	130
Molybdenum (total)	EMS0134-SEP24	mg/L	0.0004	<0.0004	1	20	105	90	110	76	70	130

20240917 15 / 21

QC SUMMARY

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate	icate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits 6)
						Recovery (%)	Low	High	(%)	Low	High	
E. Coli	BAC9170-SEP24	cfu/100mL	-	ACCEPTED	ACCEPTE							
Heterotrophic Plate Count (HPC)	BAC9170-SEP24	cfu/1mL	-	ACCEPTED	D ACCEPTE							
Total Coliform	BAC9170-SEP24	cfu/100mL	-	ACCEPTED	D ACCEPTE D							

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	RPD AC (%)		Recover	-	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0197-SEP24	No unit	0.05	NA	0		100			NA		

20240917 16 / 21

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	r.
	Reference			(%) Reco		Spike	Recove	•	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0112-SEP24	mg/L	0.002	<0.002	ND	10	104	80	120	89	75	125
4AAP-Phenolics	SKA0124-SEP24	mg/L	0.002	<0.002	ND	10	106	80	120	100	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD AC (%)	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)	
				(%)	Recovery (%)	Low	High	(%)	Low	High		
Sulphide	SKA0108-SEP24	mg/L	0.02	<0.02	ND	20	96	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	.CS/Spike Blank		Matrix Spike / R		ī.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0210-SEP24	mg/L	2	< 2	2	10	93	90	110	NA		

20240917 17 / 21

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0103-SEP24	mg/L	0.05	<0.05	1	10	99	90	110	94	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank		Matrix Spike / R		f.		
	Reference			Blank	RPD	AC	Spike Recovery (%)	•	-	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)		Low	High	(%)	Low	High		
Turbidity	EWL0217-SEP24	NTU	0.10	< 0.10	ND	10	100	90	110	NA				

20240917 18 / 21

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20240917 19 / 21

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

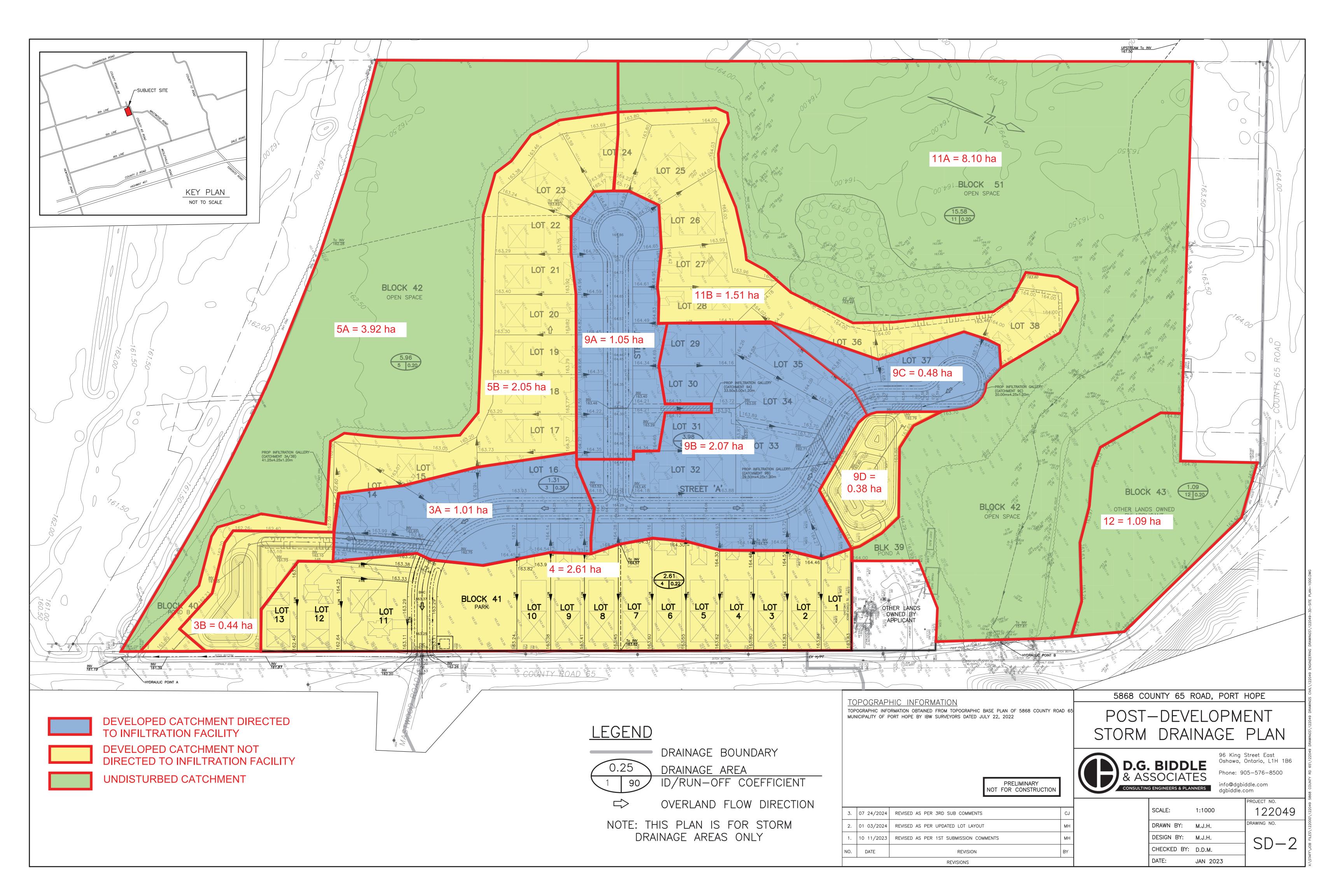
-- End of Analytical Report --

20240917 20 / 21

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

No: 039487


Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court. London. ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

LAB LIMS# SEP 15109. Laboratory Information Section - Lab use only Received By: Siri Ramand.
Received Date: 09/10/04 (mm/dd/yy)
Received Time: 18: 25 (hr:min) Received By (signature): Die Romal Cooling Agent Present: Yes No Type: 1 CF2
Temperature Upon Receipt (°C) 8 . 6 . 5 Custody Seal Present: Yes No No Custody Seal Intact: Yes No INVOICE INFORMATION REPORT INFORMATION P.O.#: 11056 Company: DM WILLS (same as Report Information) Quotation #: 11056 Site Location/ID Contact: RALF BOLVIN Project #: Company TURNAROUND TIME (TAT) REQUIRED Address: 150 SAMESON DRIVE, Contact: TAT's are quoted in business days (exclude statutory holidays & weekends). Regular TAT (5-7days) PETER SOROUGH, DN Phone: 705-868-1691 Samples received after 6pm or on weekends: TAT begins next business day 1 Day 2 Days 3 Days 4 Days RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION Phone: *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Email: rbolvin@dwwills, com Email: accounts@dnwills.com Specify Due Date: WITH SGS DRINKING WATER CHAIN OF CUSTODY Costicedowills.com REGULATIONS **ANALYSIS REQUESTED** SVOC PCB PHC VOC SPLP TCLP Pest Other (please specify) M & I O.Reg 153/04 O.Reg 406/19 Sewer By-Law: Other Regulations: Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Sanitary Table 1 Ind/Com Coarse PWQO MMER Storm Table 2 Agri/Other Medium/Fine CCME Other: Municipality: Table 3 r Characterization Pk MISA ☐Metals ☐M&I Metals & Inorganics ind CrVI, CN,Hg pH,(B(HWS),EC,SAR (Cl, Na-water) ODWS Not Reportable *See note **COMMENTS:** □voc Filtered (Y/N) Full Metals Suite NO YES RECORD OF SITE CONDITION (RSC) D1,4-ICP Metals only DB(a)F OCP F1-F4 only Sewer Use: # OF DATE TIME MATRIX DABN SAMPLE IDENTIFICATION SAMPLED BOTTLES VOCs SAMPLED Water Dignit A395883_1hr Sept 10/24 10:22am A395883_7hr Sept 10/24 4:22am Observations/Comments/Special Instructions CHRIS OSTIC Pink Copy - Client (mm/dd/yy) Sampled By (NAME): Signature: Yellow & White Copy - SGS Relinquished by (NAME): the contract, or in an alternative format (e.g. shipping documents). [3] Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at Date of Issue: 07 JUNE 2023 http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Appendix I

Water Balance

Monthly Water Budget Calculations

Sheet 1 of 4

Project No: 11056
Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP Date: 9-Aug-24

CANADIAN CLIMATE NORMALS FOR 'OSHAWA WPCP (4996)' (1981-2010)

Climate ID = 6155878 Latitude = 43.87 Longitude = -78.83

	Thornthwaite	(1948) Inputs		Monthly Water Budget Analysis							
Month	Mean Temperature (°C) ¹	Total Precipitation (mm) ¹	Heat Index	PET (mm)	Daylight Correction Factor	Adjusted PET (mm)	Surplus (mm)	Deficit (mm)			
January	-4.8	65.6	0.00	0.0	0.78	0.0	65.6	0.0			
February	-3.6	56.6	0.00	0.0	0.88	0.0	56.6	0.0			
March	0.4	54.2	0.02	1.4	1.00	1.4	52.8	0.0			
April	6.6	72.7	1.52	29.3	1.12	32.9	43.4	0.0			
May	12.3	78.9	3.91	60.1	1.23	73.9	18.8	0.0			
June	17.6	73.9	6.72	86.2	1.28	110.7	0.0	36.8			
July	20.6	73.1	8.53	106.0	1.26	133.1	0.0	60.0			
August	20.0	77.4	8.16	102.6	1.16	119.1	0.0	41.7			
September	15.9	94.0	5.76	77.1	1.04	80.3	16.9	0.0			
October	9.5	70.1	2.64	45.2	0.92	41.4	24.9	0.0			
November	4.2	84.8	0.77	17.8	0.80	14.4	67.0	0.0			
December	-1.2	70.7	0.00	0.0	0.75	0.0	70.7	0.0			
Totals		872.0	38.03			607.3	416.6	138.6			
	Thornthwaite	Coefficient (α)	1.100			Total Water	Surplus (mm)	264.7			

- Notes:

 1. Temperature and Precipitation are taken from Canadian Climate Normals 1981-2010
- 2. Water budget adjusted for latitude and length of daylight
- Potential Evapotranspiration (PET) is calculated based on the Thornthwaite 1948 equation
 Total Water Surplus (Thornthwaite, 1948) is calculated as total precipitation minus adjusted evapotranspiration

Water Balance Calculations for Existing Conditions

Sheet 2 of 4

Project No: 11056 Project Name: Osaca Whitepine Subdivision

 $\textbf{Designed/Checked By: } \, \, \textbf{NN/CP} \,$ Date: 9-Aug-24

Catchment Parameters	EX-1	EX-2									Total
	108400	138700									247100
Drainage Area (m²)	1	l									247100
Pervious Area (m²)	108400	138700									
Impervious Area (m²)	0	0									0
Evapotranspiration Factors									1		
Pervious PET Ratio	0.70	0.70									0.70
Impervious Evapotranspiration ³	0.20	0.20									0.00
Infiltration Factors				_					1		
Topography Infiltration Factor	0.30	0.25									0.27
Soil Infiltration Factor	0.40	0.40									0.40
Land Cover Infiltration Factor	0.14	0.12									0.13
MOE Infiltration Factor	0.84	0.77									0.80
Actual Infiltration Factor	0.84	0.77									0.80
Run-Off Coefficient	0.16	0.23									0.20
Runoff from Impervious Surfaces	0.80	0.80									
Inputs (mm/yr)											
Precipitation	872.0	872.0									872.0
Run-On	0.0	0.0									0.0
Other Inputs	0.0	0.0									0.0
Total Inputs	872.0	872.0									872.0
Outputs (mm/yr)											
Precipitation Surplus	264.7	264.7									264.7
Net Surplus	264.7	264.7									264.7
Evapotranspiration	607.3	607.3									607.3
Infiltration	223.5	204.3									212.7
Infiltration Features ⁴	0.0	0.0									0.0
Total Infiltration	223.5	204.3									212.7
Runoff Pervious Areas	41.2	60.5									52.0
Runoff Impervious Areas	0.0	0.0									0.0
Total Unadjusted Runoff	41.2	60.5									52.0
Total Adjusted Runoff ⁵	41.2	60.5									52.0
Total Outputs	872.0	872.0									872.0
Inputs (m³/yr)				•	•		•	•	•	•	
Precipitation	94,525	120,946									215,471
Run-On	0	0									0
Other Inputs	0	0									0
Total Inputs	94,525	120,946									215,471
Outputs (m³/yr)		· · ·									
Precipitation Surplus	28,697	36,718									65,415
Net Surplus	28,697	36,718									65,415
Evapotranspiration	65,828	84,228									150,056
Infiltration	24,228	28,333									52,561
Infiltration Features ⁴	0	0									0
Total Infiltration	24,228	28,333									52,561
Runoff Pervious Areas	4,469	8,385									12,854
Runoff Impervious Areas	0	0									0
Total Unadjusted Runoff	4,469	8,385									12,854
Total Adjusted Runoff⁵	4,469	8,385									12,854
Total Outputs	94,525	120,946	l	1	1	1			1		215,471

- Notes:

 1. Water Balance Calculations area in based on methodology described in the Conservation Authority Guidelines for Hydrogeological Assessments (June 2013)
- 2. Annual Precipitation and Evapotranspiration values were determined using the Thornthwaite (1948) method for monthly water budget calculations 3. Evaporation from impervious areas was assumed to be 0% of Precipitation
- 4. Infiltration Features are calculated using daily Precipitation data and averaged over the number of years of available data. The entire Catchment is assumed to contribute with no infiltration occuring during months with a negative average temperature.
- 5. Total Adjusted Runoff is calculated as (Pervious Runoff + Impervious Runoff) (Infiltration Features)

Project No: 11056

Project Name: Osaca Whitepine Subdivision

 $\textbf{Designed/Checked By: } \, \, \text{NN/CP} \,$

Date: 9-Aug-24

Catchment Parameters	PR-3A	PR-3B	PR-4	PR-5A	PR-5B	PR-9A	PR-9B	PR-9C	PR-9D	PR-11A	PR-11B	PR-12		Total
Drainage Area (m²)	10100	4400	26100	39200	20500	10525	20700	4775	3800	81000	15100	10900		247100
Pervious Area (m²)	8100	4100	24900	39200	20500	7800	16560	3600	3800	81000	15100	10900		235560
Impervious Area (m²)	2000	300.0	1200	0	0	2725	4140	1175	0	0	0	0		11540
Evapotranspiration Factors	2000	000.0	1200			2720	7170	1170					l	
Pervious PET Ratio	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	1	0.70
Impervious Evapotranspiration ³	0.70	0.70	0.70	0.70	0.70	0.70	0.20	0.70	0.70	0.70	0.70	0.70		0.20
Infiltration Factors	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20		0.20
Topography Infiltration Factor	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	1	0.25
Soil Infiltration Factor	0.23	0.23	0.23	0.23	0.23	0.40	0.23	0.23	0.23	0.40	0.23	0.23		0.40
Land Cover Infiltration Factor	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40		0.13
MOE Infiltration Factor	0.75	0.75	0.75	0.10	0.75	0.75	0.75	0.75	0.75	0.10	0.75	0.75		0.78
Actual Infiltration Factor	0.75	0.75	0.75	0.83	0.75	0.75	0.75	0.75	0.75	0.81	0.75	0.75		0.78
Run-Off Coefficient	0.75	0.75	0.75	0.83	0.75	0.75	0.75	0.75	0.75	0.81	0.75	0.75		0.78
		l	I		I									0.80
Runoff from Impervious Surfaces	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80		0.00
Inputs (mm/yr)	070.0	070.0	070.0	070.0	070.0	070.0	070.0	070.0	070.0	070.0	070.0	070.0		070.0
Precipitation	872.0 0.0	872.0 0.0	872.0 0.0	872.0 0.0	872.0 0.0	872.0 0.0	872.0	872.0	872.0 0.0	872.0	872.0	872.0		872.0 4.3
Run-On	0.0	0.0	0.0	0.0	0.0	0.0	51.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0		4.3 0.0
Other Inputs Total Inputs							923.0							876.3
<u> </u>	872.0	872.0	872.0	872.0	872.0	872.0	923.0	872.0	872.0	872.0	872.0	872.0		0/0.3
Outputs (mm/yr) Precipitation Surplus	350.4	294.2	284.6	264.7	264.7	376.8	351.3	371.2	264.7	264.7	264.7	264.7	ı	284.9
Net Surplus	350.4	294.2	284.6	264.7	264.7	376.8	371.9	371.2	264.7	264.7	264.7	264.7		286.7
1 '		l	I		I		1			1				589.6
Evapotranspiration	521.6	577.8	587.4	607.3	607.3	495.2	551.1	500.8	607.3	607.3	607.3	607.3		
Infiltration	159.2	185.0	189.4	218.8	198.5	147.1	168.1	149.7	198.5	214.2	198.5	198.5		198.4
Infiltration Features ⁴	191.2	0.0	0.0	0.0	0.0	177.8	178.9	210.5	0.0	0.0	0.0	0.0		34.4 232.9
Total Infiltration Runoff Pervious Areas	350.4	185.0	189.4	218.8 45.9	198.5 66.2	325.0	347.0 66.2	360.2	198.5 66.2	214.2 50.5	198.5	198.5 66.2		57.4
	66.2	66.2 697.6	66.2		1	66.2	1	66.2		1	66.2			697.6
Runoff Impervious Areas	697.6		697.6	0.0	0.0	697.6	697.6	697.6	0.0	0.0	0.0	0.0		
Total Unadjusted Runoff	191.2	109.2	95.2	45.9	66.2	229.7	192.5	221.6	66.2	50.5	66.2	66.2		87.3
Total Adjusted Runoff⁵	0.0	109.2	95.2	45.9	66.2	51.9	13.6	11.1	66.2	50.5	66.2	66.2		52.9
Total Outputs	872.0	872.0	872.0	872.0	872.0	872.0	911.7	872.0	872.0	872.0	872.0	872.0		875.3
Inputs (m³/yr)	0.007	0.007	00.750	04.400	47.070	0.470	10.050	1 404	0.044	70.000	10.407	0.505		215,471
Precipitation	8,807	3,837	22,759	34,182	17,876	9,178	18,050	4,164	3,314	70,632	13,167	9,505		,
Run-On	0	0	0	0	0	0	1,056	0	0	0	0	0		1,056
Other Inputs	0	0	0	0	0	0	0	0	0	0	0	0		0
Total Inputs	8,807	3,837	22,759	34,182	17,876	9,178	19,106	4,164	3,314	70,632	13,167	9,505		216,527
Outputs (m³/yr)	3,540	1,295	7,429	10,377	5,427	3,966	7,272	1,773	1,006	21,443	3,997	2,886		70.440
Precipitation Surplus		1 '	1 '			,								70,410 70,835
Net Surplus	3,540	1,295	7,429	10,377	5,427	3,966	7,697	1,773	1,006	21,443	3,997	2,886		70,635 145,692
Evapotranspiration Infiltration	5,268	2,542 814	15,330	23,805	12,449	5,212 1,549	11,409 3,480	2,391 715	2,308 754	49,189	9,170	6,619 2,164		49,027
	1,608 1,931	0	4,944 0	8,577 0	4,070 0	1,549	3,480	1.005	0	17,353 0	2,998 0	2,164		49,027 8,511
Infiltration Features ⁴ Total Infiltration	3,540	814	4,944	8,577	4,070	3,420	7,184	1,720	754	17,353	2,998	2,164		57,538
Runoff Pervious Areas	536	271	1,648	1,800	1,357	3,420 516	1,096	238	754 251	4,090	2,998	721		13,525
Runoff Impervious Areas	1,395	209	837	0	0	1,901	2,888	820	0	4,090	999	0		8,050
Total Unadjusted Runoff	1,931	481	2,485	1,800	1,357	2,417	3,984	1,058	251	4.090	999	721		21,575
1 -	0	481	2,485	1,800	1,357	2,417 546	281	53	251	4.090	999	721		13,064
Total Adjusted Runoff ^b Total Outputs	8,807	3,837	22,465 22,759	34,182	17,876	9,178	18,873	4,164	3,314	70,632	13,167	9.505		216,294
i otai outputs	0,007	3,037	22,759	34,102	17,070	9,176	10,0/3	4,104	3,314	/0,632	13,10/	9,505		210,234

- 1. Water Balance Calculations area in based on methodology described in the Conservation Authority Guidelines for Hydrogeological Assessments (June 2013)
- 2. Annual Precipitation and Evapotranspiration values were determined using the Thornthwaite (1948) method for monthly water budget calculations
- 3. Evaporation from impervious areas was assumed to be 20% of Precipitation
- 4. Infiltration Features are calculated using daily Precipitation data and averaged over the number of years of available data. The entire Catchment is assumed to contribute with no infiltration occuring during months with a negative average temperature.
- 5. Total Adjusted Runoff is calculated as (Pervious Runoff + Impervious Runoff) (Infiltration Features)

Water Balance Assessment (38 Lots)

Sheet 4 of 4

Project No: 11056
Project Name: Osaca Whitepine Subdivision
Designed/Checked By: NN / CP
Date: 9-Aug-24

Characteristic	Existing	Proposed No Mitigation	Change	Proposed With Mitigation	Change
Inputs (m³/yr)					
Precipitation	215,471	215,471	0.0%	215,471	0.0%
Run-On	0	1,056	0.0%	1,056	0.0%
Other Inputs	0	0	0.0%	0	0.0%
Total Inputs	215,471	216,527	0.5%	216,527	0.5%
Outputs (m ³ /yr)					
Precipitation Surplus Net Surplus	65,415 65,415	70,410 70,835	7.6% 8.3%	70,410 70,835	7.6% 8.3%
Evapotranspiration Infiltration	150,056 52,561	145,692 49,027	-2.9% -6.7%	145,692 49,027	-2.9% -6.7%
Infiltration Features Total Infiltration	0 52,561	0 49,027	0.0% -6.7%	8,511 57,538	0.0% 9.5%
Runoff Pervious Areas	12,854	13,525	5.2%	13,525	5.2%
Runoff Impervious Areas	0	8,050	0.0%	8,050	0.0%
Total Runoff	12,854	21,575	67.8%	13,064	1.6%
Total Outputs	215,471	216,294	0.4%	216,294	0.4%

Nitrat	e Dilution Calcul	lations			
24.71	ha				
38					
1000	L/day				
38,000	L/day				
40	mg/L				
2.86	mg/L				
0	mg/L				
185.0	mm/year				
•	,				
34.4	mm/year				
23,318	L/day				
					_
384,157	mg/day				
0	mg/day				
1,904,157	mg/day				
38,000	L/day				
157,639	L/day				
195,639	L/day				
9.73	mg/L				
	24.71 38 1000 38,000 40 2.86 0 185.0 134,321 34.4 23,318 1,520,000 384,157 0 1,904,157 38,000 157,639 195,639	24.71 ha 38 1000 L/day 38,000 L/day 40 mg/L 2.86 mg/L 0 mg/L 185.0 mm/year 134,321 L/day 34.4 mm/year 23,318 L/day 1,520,000 mg/day 384,157 mg/day 0 mg/day 1,904,157 mg/day 38,000 L/day 157,639 L/day 195,639 L/day 9.73 mg/L	38 1000 L/day 38,000 L/day 40 mg/L 2.86 mg/L 0 mg/L 185.0 mm/year 134,321 L/day 34.4 mm/year 23,318 L/day 1,520,000 mg/day 384,157 mg/day 0 mg/day 1,904,157 mg/day 38,000 L/day 157,639 L/day 195,639 L/day	24.71 ha 38 1000 L/day 38,000 L/day 40 mg/L 2.86 mg/L 0 mg/L 185.0 mm/year 134,321 L/day 34.4 mm/year 23,318 L/day 1,520,000 mg/day 384,157 mg/day 0 mg/day 1,904,157 mg/day 38,000 L/day 157,639 L/day 195,639 L/day	24.71 ha 38 1000 L/day 38,000 L/day 40 mg/L 2.86 mg/L 0 mg/L 185.0 mm/year 134,321 L/day 34.4 mm/year 23,318 L/day 1,520,000 mg/day 384,157 mg/day 0 mg/day 1,904,157 mg/day 38,000 L/day 157,639 L/day 195,639 L/day

Infiltration Factor Calculations for EX-1

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography							
Average Slope	0.48%						
Slope Description	Flat Land						
Topography Infiltration Factor	0.30						

	Soils	
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	10.84	10.84
Soil Infiltration Factor	0.40	0.40

Cov	Cover									
Land Use	Area (ha)	Cover Infiltration Factor								
Agriculture	6.04	0.10								
Range										
Grass										
Woods										
Wetland	4.80	0.20								
Bare Earth (>70% Rock)										
Impervious										
Total ³	10.84	0.14								

MOE Infiltration Factor	0.84
Actual Infiltration Factor	0.84

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Factor Calculations for EX-2

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope 2.22%		
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	13.87	13.87
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture	10.87	0.10	
Range			
Grass			
Woods	3.00	0.20	
Wetland			
Bare Earth (>70% Rock)			
Impervious			
Total ³	13.87	0.12	

MOE Infiltration Factor	0.77
Actual Infiltration Factor	0.77

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Factor Calculations for PR-3A

Sheet 1 of 2

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope	2.00%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	1.01	1.01
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range			
Grass	0.81	0.10	
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious	0.20		
Total ³	0.81	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Features for PR-3A

Sheet 2 of 2

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Infiltration Features Summary			
Total Storage Volume ¹	84.2 m ³		
Contributing Area ²	10100 m ²		
Pervious Area	8100 m ²		
Impervious Area	2000 m ²		
Maximum Drawdown	24 hrs		
Average Infiltration	1957 m³/yr		
Volume ³	193.7 mm/yr		

- 1. Total Storage Volume from all Infiltration Features in the catchment
- 2. The entire catchment contributes flow to the Infiltration Features
- 3. Average Infiltration Volume is calculated using daily climate data and averaged over the number of years of available data. No benefit is assumed for Infiltration Features during months with a negative average temperature.
- 4. Daily climate data is taken from Environment Canada Station 'OSHAWA WPCP' from 1981-2006

Infiltration Factor Calculations for PR-3B

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope 0.99%		
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	0.44	0.44
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range			
Grass	0.41	0.10	
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious	0.03		
Total ³	0.41	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Factor Calculations for PR-4

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope	1.55%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	Α	
Soil Type	Brighton Sand	Total
Area (ha)	2.61	2.61
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range			
Grass	2.49	0.10	
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious	0.12		
Total ³	2.49	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Factor Calculations for PR-5A

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope	0.70%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	3.92	3.92
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range	0.92	0.10	
Grass			
Woods	3.00	0.20	
Wetland			
Bare Earth (>70% Rock)			
Impervious			
Total ³	3.92	0.18	

MOE Infiltration Factor	0.83
Actual Infiltration Factor	0.83

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Factor Calculations for PR-5B

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope	1.00%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	2.05	2.05
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range			
Grass	2.05	0.10	
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious			
Total ³	2.05	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Factor Calculations for PR-9A

Sheet 1 of 2

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope 2.00%		
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	Α	
Soil Type	Brighton Sand	Total
Area (ha)	1.05	1.05
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	0.78	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious	0.27	
Total ³	0.78	0.10

MOE Infiltration Factor	0.75	
Actual Infiltration Factor	0.75	

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Features for PR-9A

Sheet 2 of 2

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Infiltration Features Summary			
Total Storage Volume ¹	48.2 m ³		
Contributing Area ²	10525 m ²		
Pervious Area	7800 m ²		
Impervious Area	2725 m ²		
Maximum Drawdown	24 hrs		
Average Infiltration	1871 m³/yr		
Volume ³	177.8 mm/yr		

- 1. Total Storage Volume from all Infiltration Features in the catchment
- 2. The entire catchment contributes flow to the Infiltration Features
- 3. Average Infiltration Volume is calculated using daily climate data and averaged over the number of years of available data. No benefit is assumed for Infiltration Features during months with a negative average temperature.
- 4. Daily climate data is taken from Environment Canada Station 'OSHAWA WPCP' from 1981-2006

Infiltration Factor Calculations for PR-9B

Sheet 1 of 2

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope 2.00%		
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

		Soils	
Hydrologic Soil Group ²	Α	Α	
Soil Type	Brighton Sand	Brighton Sand	Total
Area (ha)	1.52	0.55	2.07
Soil Infiltration Factor	0.40	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range			
Grass	1.66	0.10	
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious	0.41		
Total ³	1.66	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Features for PR-9B

Sheet 2 of 2

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Infiltration Features Summary		
Total Storage Volume ¹	120.4 m ³	
Contributing Area ²	20700 m ²	
Pervious Area	16560 m ²	
Impervious Area	4140 m ²	
Maximum Drawdown	24 hrs	
Average Infiltration	3703 m ³ /yr	
Volume ³	178.9 mm/yr	

- 1. Total Storage Volume from all Infiltration Features in the catchment
- 2. The entire catchment contributes flow to the Infiltration Features
- 3. Average Infiltration Volume is calculated using daily climate data and averaged over the number of years of available data. No benefit is assumed for Infiltration Features during months with a negative average temperature.
- 4. Daily climate data is taken from Environment Canada Station 'OSHAWA WPCP' from 1981-2006

Infiltration Factor Calculations for PR-9C

Sheet 1 of 2

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope 2.00%		
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	0.48	0.48
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	0.36	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious	0.12	
Total ³	0.36	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Features for PR-9C

Sheet 2 of 2

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Infiltration Features Summary		
Total Storage Volume ¹	40.8 m ³	
Contributing Area ²	4775 m ²	
Pervious Area	3600 m ²	
Impervious Area	1175 m ²	
Maximum Drawdown	24 hrs	
Average Infiltration	1005 m ³ /yr	
Volume ³	210.5 mm/yr	

- 1. Total Storage Volume from all Infiltration Features in the catchment
- 2. The entire catchment contributes flow to the Infiltration Features
- 3. Average Infiltration Volume is calculated using daily climate data and averaged over the number of years of available data. No benefit is assumed for Infiltration Features during months with a negative average temperature.
- 4. Daily climate data is taken from Environment Canada Station 'OSHAWA WPCP' from 1981-2006

Infiltration Factor Calculations for PR-9D

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope	2.00%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	Α	
Soil Type	Brighton Sand	Total
Area (ha)	0.38	0.38
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	0.38	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious		
Total ³	0.38	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Factor Calculations for PR-11A

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope	0.77%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	8.10	8.10
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture	3.30	0.10
Range		
Grass		
Woods		
Wetland	4.80	0.20
Bare Earth (>70% Rock)		
Impervious		
Total ³	8.10	0.16

MOE Infiltration Factor	0.81
Actual Infiltration Factor	0.81

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Factor Calculations for PR-11B

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography		
Average Slope	0.87%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	1.51	1.51
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range			
Grass	1.51	0.10	
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious			
Total ³	1.51	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Infiltration Factor Calculations for PR-12

Sheet 1 of 1

Project No: 11056

Project Name: Osaca Whitepine Subdivision

Designed/Checked By: NN / CP

Date: 9-Aug-24

Topography			
Average Slope	1.00%		
Slope Description	Flat/Rolling Land		
Topography Infiltration Factor	0.25		

Soils		
Hydrologic Soil Group ²	Α	
Soil Type	Brighton Sand	Total
Area (ha)	1.09	1.09
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range	1.09	0.10	
Grass			
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious			
Total ³	1.09	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

- 1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003
- 2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.
- 3. Composite Infiltration Factors are calculated using pervious areas only

Appendix J

Mass Balance Equation

Appendix K – D-5-4 Groundwater Impact Assessment: Mass Balance Equation

$$Q_tC_t = Q_eC_e + Q_iC_i$$

Where $Q_t = Total Volume (Q_e + Q_i)$

Note: As per the requirements of D-5-4, the maximum volume of effluent allowed to be used as dilution water is 1000L/day/lot.

C_t = Total Concetration of nitrate at property boundary

Qe = volume of septic effluent

Ce = Concentration of nitrate in effluent (40 mg/L)

Qi = Volume of available dilution water

C_i = Concentration of nitrate in dilution water

In order to determine the concertation of the nitrate at the property boundary (C_t) , the mass balance equation is rearranged to the following:

$$Ct = \frac{QeCe + QiCi}{Qt}$$