

December 19, 2024

Hillstreet Developments Ltd. 2015 Altona Road Pickering, ON K1V 2B9

Attention: Larry MacDonell

Re: Osaca Hillstreet Subdivision, Northumberland County, Ontario Hydrogeological Study Report – Addendum #1 D.M. Wills Associates Project No. 22-11056

PARTNERS IN ENGINEERING, PLANNING & ENVIRONMENTAL SERVICES

1.0 Introduction

D.M. Wills Associates Limited (Wills) was retained by Hillstreet Developments Ltd. c/o Larry MacDonell (Client) to complete a Hydrogeological Study (Study) for the property located at Pt Lot 27 Concession 5, in the village of Osaca, Ontario (Subject Property). The findings of Wills' Study were summarized in Wills' Hydrogeological Study Report (Wills' Report) submitted to the Client on April 2, 2024. Wills' Report was peer reviewed by BluMetric Environmental Inc. (BluMetric) on behalf of the Municipality of Port Hope. BluMetric's comments are summarized in the following document:

 Additional Peer Review of Hydrogeology Study – Second Submission, Proposed Residential Development, 5868 County Road 65, Osaca, Project Number 230352, prepared by Ian Macdonald, M.Sc., P.Geo. for the Municipality of Port Hope c/o Ms. Merepeza, May 17, 2024.

To address Blumetric's comments of May 17, 2024, Wills completed additional hydrogeological field work and groundwater modelling for the Subject Property. The investigative findings were summarized in the following documents:

Professional Engineers Ontario Association of consulting excinetering companies PGCO Health and Safety Excellence program Member

wsib 2023

- Revised Final Hydrogeological Study Report_v2, Osaca Hillstreet Subdivision, County Road 65, Osaca, Ontario, D.M. Wills Project Number 22-11056, prepared for Hillstreet Developments Ltd. c/o Larry Macdonell, July 17, 2024, (Wills' Revised Report).
- Osaca Hillstreet Subdivision, Northumberland County, Ontario, Hydrogeological Study Report, Answer to BluMetric Environmental following 2nd submission, D.M. Wills Associates Project No. 22-11056, for Hillstreet Developments Ltd. c/o Larry Macdonell, July 17, 2024 (Wills' Response Memo).

A Comment Response Matrix summarizing BluMetric's comments and Wills' answers up to September 24, 2024, is included in **Appendix A**. Following submission of Wills' Response Memo, the following actions were determined to be required to address the outstanding peer review comments:

- Collect additional groundwater samples from the existing wells on the subject property for analysis of nitrate.
 - Further analysis is required to establish the Subject Property's background nitrate concentration.
- Collect supplemental shallow groundwater level measurements in the existing on-site wells during summer and spring to evaluate seasonal fluctuations.
- Install three new water supply wells on the Subject Property and conduct 6-hour duration pumping tests on each to confirm yield, groundwater quality (specifically with respect to nitrate), and potential interference with neighboring pumping activities.
 - The water supply wells are required to be deeper than the three wells installed and tested in 2023.
- Based on the investigations described above, develop a groundwater monitoring program (Monitoring Program), the implementation of which would be included as a condition of Site Plan approval. The groundwater monitoring program is required to evaluate:
 - Shallow groundwater levels.
 - Nitrate concentrations at the Subject Property's downgradient limit.
 - Nitrate and other relevant parameters in the aquifer(s) that is anticipated to supply drinking water to the proposed development.

This Addendum #1 to Wills' Revised Report describes the additional investigations completed since July 17, 2024, based on the peer review comments.

Wills' investigations have been completed on the basis of:

- the Ministry of Environment Conservation and Parks (MECP) Guidelines D-5-5 Private Wells: Water Supply Assessment (Guideline D-5-5).
- the Preliminary Draft Plan prepared by D.G. Biddle & Associates Limited (Biddle), dated August 15, 2024, included in **Appendix B**. This latest Preliminary Draft Plan includes a reduced number of residential lots (38)

22-11056, Osaca Hillstreet Subdivision Page 3 of 36

> compared to the previous version of February 2, 2024, which was used as the basis for Wills' Revised Report.

2.0 Scope of Work

Wills' approved Scope of Work to address BluMetric's peer review comments included the following:

- Static groundwater level measurements were recorded on September • 10, and September 27, 2024, in three monitor wells installed by Cambium Inc. (Cambium) in 2022. These wells are identified as BH-101-22, BH-107-22 and BH110-22. Groundwater was encountered at depths ranging from 2.33 to 2.66 meters below ground (mbg).
- Six groundwater samples were collected on September 27, 2024, and submitted to SGS Canada Inc. (SGS) for nitrate analysis to inform background nitrate concentration. Groundwater samples were collected from:
 - o BH101-22, BH107-22 and BH110-22, which are constructed to a depth of approximately 6 mbg.
 - Ontario Regulation (O. Reg.) 903 Water Supply Wells A377795, 0 A377796 and A377799 installed in 2023 at depths ranging from approximately 10 to 12 mbg.
- Herb Lang Well Drilling Ltd. (HLWD) conducted a 6-hour duration pumping test on three newly installed O. Reg. 903 Water Supply Wells on the Subject Property on September 9, 10 and 11, 2024, respectively.
 - These wells are identified as A395881, A395882, and A395883 based on their Well Tag Numbers.
 - The pumping tests were conducted to determine production 0 yield, maximum pumping rate, well recovery, groundwater quality, the potential for interference with existing neighbouring groundwater taking activities, and on-site interference postdevelopment.
- Two groundwater samples were collected from each of the three newly installed (2024) O. Reg. 903 Water Supply Wells during the pumping tests (at the 1-hour and 6-hour pumping test intervals) and submitted to SGS for analysis of select physical, chemical, and biological parameters for comparison to the Ontario Drinking Water Quality Standards (ODWQS).
- During the pumping tests, real-time data logging technology (Solinst Level Loggers) was employed to record the drawdown and

groundwater level fluctuations, as well as the response to pumping in all the other on-site O. Reg. 903 Water Supply Wells.

- In addition, groundwater level fluctuations were monitored using a Solinst water level tape in monitor wells BH107-22 and BH110-22.
- Groundwater modelling was used to evaluate the pumping test data was respect to groundwater availability and the potential for interference with on-site and neighbouring water users post-development.
- Evaluation of Wills' field investigative findings and preparation of this Addendum #1.

22-11056, Osaca Hillstreet Subdivision Page 5 of 36 December 19, 2024

3.0 Shallow Groundwater Static Level

Table 1 summarizes the static shallow groundwater levels in monitor wells BH101-22, BH107-22 and BH110-22. Groundwaterelevations for select monitor wells were inferred using the relative elevations provided in Cambium's November 2022report titled Geotechnical Investigation – Proposed Residential Development, 5868 County Road 65, Port Hope, ON(Geotechnical Report) and are referenced to a local (assumed) benchmark.

		Well	Cround	Octobe	r 5, 2022	Decemb	er 5, 2023	Septemb	er 9, 2024	Septembe	er 27, 2024
Well ID	Installation year	depth (mbg)	Elevation (masl)	GW level (mbg)	GW Elevation (masl)						
BH101-22	2022	6.20	199.90	2.66	197.24	2.83	197.07			2.66	197.24
BH107-22	2022	5.94	200.40	2.54	197.86	2.85	197.55	2.33	198.07	2.48	197.92
BH110-22	2022	5.97	198.70	2.58	196.12	2.99	195.71	2.43	196.27	2.57	196.13

Table 1 – Shallow Groundwater Static Level

*mbg – metres below ground masl – metres above sea level, measured against an assumed datum (local benchmark)

Additional measurements during spring and at the end of summer are included in Wills' proposed Monitoring Program described in **Section 6**.

4.0 Nitrate Concentrations in Groundwater

Table 2 summarizes nitrate concentrations in groundwater samples collectedon the Subject Property by Wills between October 2022 and September 2024.Certificates of Analysis provided by SGS for all the sampling events listedbelow are included in **Appendix C**.

Well ID	Installation	Well	Nitra	te Conce	ntrations (mg/L)			
Weilib	date (yyyy-mm-dd)	(mbg)	Oct. 2022	Oct. 2023	Dec. 2023	Sept. 2024			
	Surficial Aqui	fer (approxiı	mate dep	th 3-6 mb	g)				
MW22-08	2022-09-23	3.00	4.35						
BH101-22	2022-09-23	5.73			8.84	8.67			
BH107-22	2022-09-23	5.79	0.68		0.188	0.17			
BH110-22	2022-09-23	5.67	0.39		2.72	4.81			
	Intermediate Aquifer (approximate depth 10-12 mbg)								
A377795	2023-10-17	11.19		5.69*		1.18			
A377796	2023-10-12	11.64		0.11*		0.09			
A377799	2023-10-06	9.71		1.73*		1.82			
Deep Overburden Aquifer (approximate depth 22-24 mbg)									
A395881	2024-08-08	23.77				<0.06*			
E	3edrock Aquifer (a	pproximate	depth to	bedrock 4	l3 mbg)				
A395882	2024-08-06	48.49				<0.06*			
A395883	2024-07-31	48.50				<0.06*			

Table 2 – Nitrate concentrations in groundwater on the subject Property

*Average of concentrations measured in the 1-hr and 6-hr/7-hr samples collected during pumping tests.

Analytical results obtained during the pumping tests completed in 2023 showed the presence of nitrate in the intermediate aquifer (10 – 12 mbg). Assuming deeper aquifers would be less exposed to potential nitrate contamination from surface, Wills recommended installing deeper wells on the Subject Property to evaluate groundwater quality and availability at greater depths.

Based on the results obtained in September 2024, the deeper aquifers in which wells A395881, A395882 and A395883 were installed appear unaffected

22-11056, Osaca Hillstreet Subdivision Page 7 of 36

by nitrate. The subsurface soil stratigraphy encountered during the installation of these wells is described in the MECP well records prepared by HLWD and included in **Appendix D**. All three well records mention the presence of an approximately 10 m thick layer of relatively compacted clayey material from approximately 12 to 22 mbg. The presence of this layer could mitigate the vertical migration of nitrate and explain the low nitrate concentrations in wells A395881, A395882 and A395883.

Additional sampling events of the surficial aquifer and intermediate aquifer are included in Wills' proposed Monitoring Program described in Section 6.

5.0 Pumping tests

HLWD installed three new O. Reg. 903 water supply wells (A395881, A395882 and A395883) on the Subject Property on August 8, August 6 and July 31, 2024, respectively. The location of these wells is shown on Figure 1 and the corresponding MECP Well Records are included in Appendix D.

Wells A395882 and A395883 were installed in bedrock at a depth of approximately 49 mbg, and A395881 was installed in a gravel layer at a depth of approximately 24 mbg.

A 6-hour duration pumping test was conducted in each of the three wells on September 9 (A395882), September 10 (A395883) and September 11 (A395881), 2024. The pumping tests were conducted to confirm the performance of the wells over sustained pumping activity, evaluate the cumulative effect of future on-site pumping activities on aroundwater availability, the potential for interference with onsite and neighboring aroundwater taking activities, and to enable the collection of aroundwater samples for quality analysis.

During each pumping test, drawdown and groundwater level fluctuations were monitored using:

- Solinst Level Loggers and confirmatory manual measurements in the • newly installed water supply wells (A395881, A395882 and A395883) and the water supply wells installed in 2023 (A377795, A377796 and A377799).
- Manual measurements using a Solinst water level tape in monitor wells BH107-22 and BH110-22, installed by Cambium in 2022 at a depth of approximately 6 mbg.

5.1 A395882 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 liters per minute (L/min) (5 US gallons per minute [GPM]). Considering the rapid dewatering of the well observed while pumping at this rate, the pumping rate was decreased to 15.1 L/min (4 GPM US) after 12 minutes of pumping, then to 11.4 L/min (i.e. 3 GPM) after 23 minutes of pumping, and was maintained at that rate until completion of the test. Pumping was stopped after 420 minutes. Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 3**.

			Date:	Sept. 9, 2024					
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up (mag)	Static Water Level (mbg)					
Pumping Well									
A395882	49.10	48.49	0.61	9.54					
Observation Wells									
A395883	49.10	48.50	0.60	9.80					
A395881	24.40	23.77	0.63	10.43					
A377795	11.70	11.19	0.51	2.94					
A377796	12.24	11.64	0.60	2.72					
A377799	10.32	9.71	0.61	2.81					
BH107-22	6.76	5.79	0.97	2.33					
BH110-22	6.58	5.67	0.91	2.43					

Table 3 – A395882 Well Pumping Test Details

mbtop - metres below top of pipe, mbg - metres below ground, mag - metres above ground

Hydrographs for the Pumping Well and Observation Wells are included in **Appendix E.** Pumping test details are summarized in **Table 4** below.

	Pumping Rate (L/min)	Duration (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)	
Stop Tost	18.9	12	6.16	No stabilization	226.8	
Siep lesi	15.1	11	8.80	No stabilization	392.9	
Constant Rate 11.4 397		397	12.90	22.44*	4,918.7	
R	ecovery Time	•	% Recovery			
	50 minutes		90%			

Table 4 – Pumping Test Summary Well A395882

*During the last 30 minutes of the test, groundwater level was still dropping at a relatively slow rate of 0.10 meters per hour (m/h).

The following observations are provided with respect to the A395882 pumping test results:

- The drawdown observed at the initial rate of 18.9 L/min suggests complete dewatering of the well could occur within 76 minutes of starting the pump. Similarly, the drawdown observed at the subsequent rate of 15.1 L/min suggests that complete dewatering of the well would occur before the end of the minimum test duration required by Guideline D-5-5. Therefore, the pumping rate for this test was decreased to 11.4 L/min (3 GPM) and the duration of the test was adjusted to 420 minutes to meet Guideline D-5-5 requirements. The rate of 11.4 L/min, applied during the majority of the test, is consistent with the recommended pumping rate provided by HLWD on the A395882 MECP record.
- 90% recovery was observed in the pumping well within 50 minutes of stopping the pump.
- Water levels monitored at all the observation wells showed no response to the pumping activity, except for well A395883.
- A maximum drawdown of 1.04 m was measured in observation well A395883 after 426 minutes of starting the pump in well A395882 (i.e. 6 minutes after pumping was stopped). Similar to what was observed in the pumping well, the groundwater level in observation well A395883 was still decreasing at a slow rate of approximately 0.04 m/h during the last 30 minutes of pumping.

Based on the results obtained during the pumping test in A395882:

- Interactions due to pumping between water supply wells installed in bedrock are anticipated.
- Significant interactions due to pumping between wells installed in bedrock and wells installed in the shallower on-site aquifers (i.e. 10-12 mbg and 22-24 mbg) are not anticipated.
- If proposed residential properties on the Subject Property are supplied by a bedrock well, secondary storage (i.e. cistern) will be required to compensate for the relatively low yields and meet peak water demand.

Potential interactions between pumping activities both on the Subject Property and neighboring properties are discussed further in **Section 5.4**.

5.2 A395883 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 L/min (5 GPM). Considering the rapid dewatering of the well observed while pumping at this rate, the pumping rate was decreased to 15.1 L/min (4 GPM) after 16 minutes of pumping, then to 11.4 L/min (3 GPM) after 29 minutes of pumping, and was maintained at that rate until completion of the test. Pumping was stopped after 413 minutes. Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 5**.

			Date:	Sept. 10, 2024				
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up (mag)	Static Water Level (mbg)				
Pumping Well								
A395883	49.10	48.50	0.60	9.81				
Observation Wells								
A395882	49.10	48.49	0.61	9.89				
A395881	24.40	23.77	0.63	10.44				
A377795	11.70	11.19	0.51	2.95				
A377796	12.24	11.64	0.60	2.73				
A377799	10.32	9.71	0.61	2.82				
BH107-22	6.76	5.79	0.97	2.33				
BH110-22	6.58	5.67	0.91	2.44				

mbtop – metres below top of pipe, mbg – metres below ground, mag – metres above ground

Hydrographs for the Pumping Well and Observation Wells are included in **Appendix E.** Pumping test details are summarized in **Table 6** below.

	Pumping Rate (L/min)	Duration (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)	
Stop Tool	18.9	16	7.76	No stabilization	302.4	
Step lest	15.1	13	8.63	No stabilization	498.7	
Constant Rate	11.4	384	10.59	20.40*	4,876.3	
	Recovery Time		% Recovery			
145 minutes			90%			

Table 6 – Pumping Test Summary Well A395883

* During the last 30 minutes of the test, groundwater level was still dropping at a relatively slow rate of 0.14 meters per hour (m/h).

The following observations are provided with respect to the A395882 pumping test results:

- The drawdown observed at the initial rate of 18.9 L/min suggests complete dewatering of the well would occur within 80 minutes of starting the pump. Similarly, the drawdown observed at the subsequent pumping rate of 15.1 L/min suggests complete dewatering of the well could occur before the end of the minimum test duration required by Guideline D-5-5. Therefore, the pumping rate for this test was decreased to 11.4 L/min (3 GPM) and the duration of the test was adjusted to 413 minutes to meet Guideline D-5-5 requirements. The rate of 11.4 L/min applied during the majority of the test is consistent with the recommended pumping rate provided by HLWD on the A395883 MECP record.
- 90% recovery was observed in the pumping well within 145 minutes of stopping the pump.
- Water levels monitored at all the observation wells showed no response to the pumping activity, except for A395882.
- A maximum drawdown of 0.94 m was measured in observation well A395882 after 416 minutes of starting the pump in A395883 (i.e. 3 minutes after pumping was stopped). Similarly to what was observed in the pumping well, the groundwater level in A395882 was still

22-11056, Osaca Hillstreet Subdivision Page 12 of 36

> decreasing at a slow rate of approximately 0.04 m/h during the last 30 minutes of pumping.

Based on the results obtained during the pumping test in A395883:

- Interactions due to pumping between water supply wells installed in bedrock are anticipated.
- Significant interactions due to pumping between wells installed in bedrock and wells installed in the shallower aquifers identified on the Subject Property (i.e. 10-12 mbg and 22-24 mbg) are not anticipated.
- If proposed residential properties on the Subject Property are supplied by a bedrock well, secondary storage (i.e. cistern) will be required to compensate for the relatively low yields and meet peak water demand.

Potential interactions between pumping activities both on the Subject Property and neighboring properties are evaluated further in Section 5.4.

5.3 A395881 Well Test

Following installation of the level loggers, pumping started at a rate of 94.6 L/min (25 GPM). This rate was maintained during the entirety of the 6-hour duration pumping test. Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in Table 7.

ſable	7 –	A395881	Well	Pumping	Test	Details
-------	-----	---------	------	---------	------	---------

			Date:	Sept 11 2024					
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up (mag)	Static Water Level (mbg)					
Pumping Well									
A395881	24.40	23.77	0.63	10.44					
Observation Wells									
A395882	49.10	48.49	0.61	9.86					
A395883	49.10	48.50	0.60	10.90					
A377795	11.70	11.19	0.51	2.95					
A377796	12.24	11.64	0.60	2.74					
A377799	10.32	9.71	0.61	2.83					
BH107-22	6.76	5.79	0.97	2.34					
BH110-22	6.58	5.67	0.91	2.45					

mbtop – metres below top of pipe, mbg – metres below ground, mag – metres above ground

Hydrographs for the Pumping Well and Observation Wells are included in **Appendix E.** Pumping test details are summarized in **Table 8** below.

Table 8 – Pumping Test Summary Well A39588
--

	Pumping Rate (L/min)	Duration (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)	
Constant Rate	94.6	360	0.48*	10.92	34,056.00	
	Recovery Time		% Recovery			
	27.5 minutes		90%			

*Maximum drawdown was measured after 356 minutes of pumping. At the 6-hour mark, the measured drawdown was 0.465 m.

22-11056, Osaca Hillstreet Subdivision

The following observations are provided with regards to the A395881 pumping test results:

- The pumping rate applied for the test represents more than 5 times the peak demand rate considered in MECP Guideline D-5-5 for a residential lot (18.75 L/min).
- Considering a pump installation depth of 20.7 mbg as recommended on the MECP record for A395881 (i.e. approximately 1.83 m above the top of the well's screen), the maximum drawdown observed in well A395881 during the test represents less than 5 % of the available drawdown.
- 90% recovery was observed in the pumping well within 28 minutes of stopping the pump.
- Water levels monitored at all the observation wells showed no response to the pumping activity in well A395881.

Based on the results obtained during the pumping test in well A395881:

- A395881 is more than capable of supplying sufficient groundwater supply to a single dwelling.
- Significant interactions between wells installed in the same stratigraphic unit as A395881 to supply individual dwellings are not anticipated.
- Significant interactions between wells installed in the same stratigraphic • unit as A395881 and wells installed in the same stratigraphic units as the observation wells included in the test are not anticipated.

Potential interactions between pumping activities both on the Subject Property and neighboring properties are discussed further in Section 5.4.

5.4 Hydrogeological Modelling

The proposed development includes 38 residential lots, as shown on the Preliminary Draft Plan dated August 15, 2024, included in Appendix B.

Based on Guideline D-5-5, the drinking water requirement for a residential lot is 2.25 m³/day. Results obtained during the pumping tests completed by Wills in October/November 2023 on wells A377795, A377796 and A377799, and in September 2024 on wells A395881, A395882 and A395883 suggest that each tested well can support the anticipated demand on individual residential lot, with supplementary storage systems proposed for wells constructed in bedrock.

Wills developed an eight-layer three-dimensional computer groundwater model (Model) to evaluate the capacity of the various on-site aguifers to

meet the water taking requirements of the proposed 38 residential lots, including the potential for interference between pumping activities both onsite and on neighboring properties.

Due to uncertainty of the lateral extent and water bearing capacity of the coarse gravel formation intercepted at A395881, the Model was used to evaluate several scenarios with respect to the anticipated installation depths of the future water supply wells on the Subject Property:

- Scenario 1: All 38 wells installed in bedrock, pumping for 6 hours in each well simultaneously, at a rate of:
 - Scenario 1.1: 18.75 L/min
 - o Scenario 1.2: 11.36 L/min
- Scenario 2: 5 wells installed in a gravel layer similar to the one intercepted by A395881 (wells associated with lots 11 through 15 in the southeast corner of the Subject Property), and the remaining 33 wells installed in bedrock.
 - Scenario 2.1: pumping at 18.75 L/min for 6 hours in each of the 38 wells simultaneously
 - Scenario 2.2: pumping at 18.75 L/min in each of the 5 wells 0 installed in the gravel layer, and at 11.36 L/min in each of the 33 wells installed in bedrock, for 6 hours, simultaneously
- Scenario 3: All 38 wells installed in the intermediate aquifer intercepted by A377795, A377796 and A377799, pumping for 6 hours at a rate of 18.75 L/min in each of the 38 wells simultaneously.

The pumping rates used in the scenarios described above are based on Wills' pumping tests results and the Guideline D-5-5 requirements for a minimum pumping rate of 18.75 L/min over a minimum duration of 6 hours, for an individual residential lot.

The approximate location of the 38 virtual wells used in the Model is shown on Figure 2. The following sections describe the Model used to evaluate Scenarios one through three and the results obtained for each scenario.

Elevations provided in the following sections are approximate as no survey of ground elevations was undertaken at the Subject Property. Elevations were inferred from a topographic map of the Subject Property. Ground surface at each of the three wells installed in 2024 (A395881, A395882 and A395883) was estimated to be 164.0 masl.

5.4.1 Aquifer Parameters

Wells A395882 and A395883 were installed in bedrock, as little available water was found in the alternating sediments of varying texture and hydraulic conductivity encountered above bedrock at these two locations. In wells A395882 and A395883, bedrock was encountered at a depth of 43.59 mbg (i.e. at an approximate elevation of 120.72 masl). A thin layer (approximately 0.3 metres [m]) of fractured bedrock and gravel was encountered on top of the bedrock and appeared to be water bearing. Pumping tests were carried out in both wells to determine aquifer parameters.

Well A395881 encountered a permeable water-bearing gravel layer at a depth of 22.3 mbg (i.e. elevation 141.75 masl). The gravel formation was drilled to 23.8 m mbg and a screen installed from 22.6 to 23.8 m mbg. The well was developed after drilling at a rate of 78.6 m³/day (i.e. 54.6 L/min). Based on the MECP record for A395881, this gravel layer is at least 1.5 m thick. Observations by the driller during installation of the well suggest that the gravel formation may have extended at least 0.3 m below the installation depth and contained considerable water.

A lateral extension of the permeable gravel formation encountered at a depth of 22.3 mbg in well A395881 appeared to be present in well A395882 at a depth of 25.91 mbg, with a thickness of approximately 0.91 m. In well A395882 however, this formation contains more sand and did not yield any obvious groundwater. A cross section (A-A') showing the inferred extent of the gravel formation between wells A395881 and A395882 is included as **Figure 3**.

Similarly, the sand and gravel formation encountered in well A395883 at a depth of 21.95 mbg with a thickness of 5.48 m appears to be a lateral extension of the permeable gravel encountered in well A395881. However, similar to what was observed at well A395882, this formation at well A395883 did not yield any obvious groundwater. Well A395883 is approximately 85 m from well A395881.

Figure 1 shows the location of all O. Reg. 903 Water Supply Wells installed on the Subject Property as part of Wills' Study, as well as wells TW1, TW2 and TW3 installed in 2018 on a neighboring property to the south.

Information regarding wells TW1 through TW3 used in Wills' assessment is based on the report titled "Groundwater Supply Assessment Report – Hope Concession 5, Part Lot 27 County Road No. 65", prepared by Ted Rannie M.Sc., P. Geo in September 2018 (2018 Report). This report was prepared to support the development of a 20-lot subdivision on lands directly south of the Subject Property. On the MECP well records included in the 2018 Report, wells TW1, TW2 and TW3 are identified respectively with Well Tag Numbers A248943, A248945 and A248942.

22-11056, Osaca Hillstreet Subdivision Page 17 of 36

Based on the review of the 2018 Report, it appears that the gravel layer encountered in well A395881 was also encountered in TW2 and TW1 with respective thicknesses of approximately 1 m (TW2) to 10 m (TW1). Similarly to the case between wells A395881 and A395883, no obvious groundwater was found in the gravel formation in TW1, according to the drilling contractor, while TW2 yielded relatively high volumes of water from the same formation. Well TW3 did not encounter this gravel layer during drilling. A cross section (B-B') showing the inferred extent of the gravel formation between wells A395883 and TW1 is included as Figure 4.

A plausible explanation for the existence of this permeable aravel formation is that it is a meltwater channel (tunnel channel) deposited during the waning of the last ice age. The gravel in well A395881 and TW2 may have been deposited in a high energy environment at the center of the channel and the fast-flowing water washed away all the fine materials, leaving coarse gravel. The gravel deposits in wells A395882, A395883 and TW1 represent the lower energy depositional sides of the channel with lower permeability.

The static groundwater levels measured in wells A395881, A395882 and A395883 range from approximately 9.5 to 10.5 mbg, and are significantly higher than where water was encountered during drilling. This indicates a confined or semi-confined aguifer. A semi-confined aguifer indicates that leakage from the overlying low permeability aguitard contributes to well yield. Data obtained during the pumping tests completed by Wills in September 2024 (drawdown data versus pumping rates) was analyzed to determine transmissivity "T" and storativity, "S" of the aquifers intersected by wells A395881, A395882 and A395883. Aquifer parameters were derived from curve matching using the Hantush method for leaky confined aquifers, which provided the best curve match. Therefore, results obtained during Will's Study suggest that the aquifers intersected by wells A395881, A395882 and A395883 on the Subject Property are semi-confined with leakage from above and below.

Table 9 shows the aquifer parameters derived from the method described above.

Well ID	Pumping Rate (m³/d)	Transmissivity (T) (m²/d)	Storativity (S)	Maximum drawdown (m)	Test length (min)	Aquifer Thickness (m)	Hydraulic Conductivity (K) (m/d)		
Sept 9, 202	Sept 9, 2024 Test – Pumping Well (PW) = A395882								
A395882	16.35	1.49	9.54E-5	12.9	420	5.18	0.29		
A395883		3.38	2.93E-05	1.04	420	1.22	2.77		
A395881		no response							
Sept 10, 20	Sept 10, 2024 Test – PW = A395883								
A395883	16.35	0.95	0.045	10.59	413	1.22	7.5		
A395882		3.11	4.1E-5	0.94	413	5.18	6.8		
A395881		no response							
September 11, 2024 Test – PW = A3395881									
A395881	136.3	196.6	0.035	0.465	360	1.52	129.3		
A395883		no response							
A395882		no response							

Table 9 – Derived Aquifer Parameters – Subject Property

The results show a transmissivity and hydraulic conductivity of 196.6 m²/d and 129.3 m/d respectively for the coarse gravel layer encountered in well A395881. The fractured bedrock and bedrock encountered in A395883 and A395882 indicate a much lower transmissivity and hydraulic conductivity of 0.95 to 3.38 m²/d and 0.29 to 7.5 m/day respectively. A high transmissivity and hydraulic conductivity imply a high water yield from wells. In contrast low transmissivity and hydraulic conductivity imply low water yields from wells.

5.4.2 Comparison with the Results Obtained on the Neighbouring Property

Data from the 2018 Report pertaining to the pumping tests completed in wells TW1 and TW3 on the neighboring property to the south was also analysed to derive aquifer parameters. The results of the analysis are summarized in **Table 10**. Data for the pumping well TW2 was not available.

Well ID	Pumping Rate (m³/d)	Transmissivity (T) (m²/d)	Storativity (S)	Maximum drawdown (m)	Test length (min)	Aquifer Thickness (m)	Hydraulic Conductivity (K) (m/d)		
PW = TW1*									
TW 1	28.22	0.50	0.20	26.17	420	2.7	0.185		
PW = TW2*									
TW2	163.58	no data		3.35	480	1.2			
TW 1		49.9	1.08E-6	0.20	480	2.7	18.5		
TW3		1.53	8.4E-12	22.61	480	3.1	4.74		
PW = TW3*									
TW3	109.0	0.42	7.31E-5	22.55	482	3.1	0.135		
TW3**		5.36				3.1	1.73		

Table 10 – Derived Aquifer Parameters – Property to the South

*TW1 pumping in sand and gravel overlying bedrock; TW2 pumping from intermediate depth coarse gravel; TW3 pumping from limestone bedrock.

**Hvorslev Test 2018

On the Subject Property, pumping at 136.3 m³/day in well A395881 produced a drawdown of 0.465 m after 6 hours in the coarse gravel layer. No response was detected during the test in any other O. Reg. 903 well installed on the Subject Property, including wells A395882 and A395883 installed in bedrock. Pumping in one of the bedrock wells influenced the other non-pumping observation well installed in bedrock, implying a fairly extensive hydraulic connection in the bedrock. However, pumping in the wells installed in bedrock had no effect on any of the other wells installed in the overburden.

It is likely that the hydraulic conductivity of the coarse gravel layer in the area of TW2 is similar to the hydraulic conductivity of the gravel layer encountered in well A395881. The pumping test in TW2 also produced a drawdown effect of 0.20 m in TW1, in the gravel layer just overlying bedrock 132.4 m away from TW2, and a drawdown of 22.6 m in TW3 in the bedrock 168.1 m away from TW2. This indicates some hydraulic connection between the bedrock, the gravel layer overlying bedrock and the shallower coarse gravel layer. The coarse gravel layer is separated from the bedrock and overlying gravel by 6.5 m of sandy silt in TW1. The coarse gravel layer does not occur in TW3.

5.4.3 Model Construction and Calibration

A detailed computer three-dimensional groundwater model was constructed based on the results of subsurface investigations and aquifer testing. Eight layers were input spanning the depth from surface (Layer 1) to the bottom of the deepest wells in the bedrock (Layer 8). A 1:10,000 topographic map was used as the basis of the model so that hydraulic boundaries (e.g. rivers and wetlands) at their respective elevations could be incorporated into the model as boundary conditions.

Aquifer parameters derived from the pumping tests completed in 2023 in wells A377795, A377796 and A377799 were input into the model in Layer 3 (sand). Aquifer parameters derived from the pumping tests completed in 2024 and described in this Addendum #1 were input into the model in Layer 5 (coarse gravel formation) and Layer 8 (bedrock).

Hydraulic conductivity was derived from transmissivity divided by the thickness of the aquifer. Storativities used in the model were those derived from the pumping tests in Layers 3, 5 and 8. Specific yield was set at 0.25 which is characteristic of the surficial material encountered. Hydraulic parameters for the low permeability layers (silt and clay) were estimated based on professional experience. Recharge was estimated at 213 mm/yr based on the water balance analysis (existing conditions) included in Wills' Revised Report.

Initially, a steady-state model was set up and calibrated to the static water level measured in wells A395881, A395882, A395883, TW1, TW2 and TW3. This model was then converted to a transient (time-based) model with two stress periods (pumping periods). The first stress period was run to produce quasi steady-state conditions to obtain simulated static water level elevations. The second stress period was for the length of the pumping tests, usually 6-hours (0.25 days). Each pumping test was simulated in the model and parameters adjusted until a reasonable match between simulated and observed drawdown was obtained. The Peaceman correction translates the simulated drawdown in the model cell to the simulated drawdown in the pumping well, which has a significantly smaller diameter than the model cell. The model predictions of Peaceman corrected simulated drawdowns are considered excellent compared to the observed drawdowns. The results of the calibration analysis described above are summarized in **Table 11**.

Well ID*	Simulated Static Water Level (masl)	Simulated Pumping Level (masl)	Simulated Drawdown (m)	Peaceman Corrected Drawdown (m)	Observed Drawdown (m)
PW A395881	154.61	154.40	0.21	0.41	0.47
OBS A395882	154.64	154.22	0.42		0.94
PW A395883	154.49	150.48	4.0	10.59	9.27

Table 11 - Simulated and Observed Drawdowns

*PW: Pumping Well; OBS: Observation Well

Well A395882 was an observation well (OBS A395882) during the pumping test on well A395883 (PW A395883). The match between simulated corrected drawdowns and observed drawdowns are considered very good.

This calibrated and verified (with pumping test data) model simulated drawdowns in the 38 proposed domestic wells based on the pumping scenarios described in **Section 5.4**. Results obtained are described in the following sections.

5.4.4 Scenario 1 - Evaluation

In Scenario 1, all 38 wells are installed in bedrock (Layer 8). The model was used to simulate drawdowns after pumping for 6 hours in each well simultaneously at a rate of:

- Scenario 1.1: 18.75 L/min
- Scenario 1.2: 11.36 L/min

The proposed 38 wells pumping in relatively close proximity will interfere with each other to some degree. The drawdown in each well (assuming the same pumping rate) will vary depending on the hydraulic conductivity of the bedrock and the proximity of each well to those around it. Thus, to determine the effect of all wells in the bedrock, two wells at the approximate centre of the well field were chosen to compare results of the simulations. These selected wells are designated in **Table 12** and subsequent tables by the model row (R) and column (C) in which the wells are located.

Simulated drawdowns and elevations obtained for Scenario 1.1 and Scenario 1.2 are summarized in **Table 12** and **Table 13** respectively.

		Simulated		Peaceman	Estimated		
Well	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)	
R60 C66	154.02	129.33	24.69	40.05	113.97	120.41	
R63 C57	154.73	128.22	26.51	41.10	112.92	120.41	

Table 12 – Scenario 1.1 – Simulation Results

The results obtained for Scenario 1.1 suggest that pumping in all 38 wells installed in bedrock for 6 hours at a rate of 18.75 L/min would dewater the wells. Scenario 1.1 is therefore considered not feasible.

		Simulated		Peaceman	Estimated		
Well	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (mgsl)	Bedrock Elevation (masl)	
R60 C66	153.99	139.83	14.16	23.47	130.52	120.41	
R63 C57	154.70	138.16	16.54	25.60	129.10	120.41	

Table 13 – Scenario 1.2 – Simulation Results

The results obtained for Scenario 1.2 suggest that the bedrock is capable of sustaining a pumping rate of 11.36 L/min (16.36 m³/d) for 6 hours each day without dewatering the wells and with minimum drawdown effects on adjacent properties as shown of **Figure 5**. Please note that the Peaceman corrected drawdown refers only to the drawdown in each well. Between wells the simulated drawdowns shown in **Table 13** and those shown in **Figure 5** will occur.

5.4.5 Scenario 2 – Evaluation

A simulation of all domestic wells pumping from the coarse gravel layer (model Layer 5) each at 18.75 L/min for 6 hours showed cumulative drawdowns of less than 1.0 m. Depending on the extent of this gravel layer and its water bearing capacity, the water needs of the Proposed Development could easily be met. However, as mentioned previously, the water bearing capacity of this layer varies from substantial water availability to no apparent water availability. The only way to confirm the existence and water bearing capacity of this gravel layer is to drill water wells to intercept it. It is likely that some of the wells drilled on the Subject Property will encounter this water bearing gravel layer. However, it is impossible to know how many of

22-11056, Osaca Hillstreet Subdivision Page 23 of 36

the 38 wells will intercept this layer. Therefore, a relatively conservative Scenario 2 was tested.

In Scenario 2, the 5 wells associated with lots 11 through 15 in the southeast corner of the Subject Property are installed in Layer 5 (coarse gravel formation) while the remaining 33 wells are installed in Layer 8 (bedrock). The model was used to simulate drawdowns after pumping for 6 hours at a rate of:

- Scenario 2.1: 18.75 L/min in each of the 38 wells simultaneously.
- Scenario 2.2: 18.75 L/min in the 5 wells installed in Layer 5, and 11.36 L/min in the 33 wells installed in Layer 8, simultaneously.

Simulated drawdowns and elevations obtained for Scenario 2.1 are summarized in Table 14 and Table 15. As drawdowns are slightly different in all the wells due to their spacing, the drawdowns for representative wells are given in each layer.

	Simulated			Peaceman	Estimated	
Groundwater Model Well ID	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R60 C66	153.99	130.68	23.31	32.62	121.37	120.41
R63 C57	154.71	128.87	25.84	34.90	119.81	120.41

Table 14 – Scenario 2.1 – Simulation Results – Layer 8

Table 15 – Scenario 2.1 – Simulation Results – Layer 5

	Simulated			Peaceman	Estimated	
Groundwater Model Well ID	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R68 C67	154.66	154.61	0.05	0.09	154.57	120.41
R74 C72	154.52	154.48	0.04	0.08	154.44	120.41

Pumping in 5 wells installed in Layer 5 has almost negligible effect on aroundwater levels. However, the simulation of pumping 33 domestic wells at 18.75 L/min for 6 hours from the bedrock resulted in the water level in the bedrock wells declining to the level of the bedrock surface. It would be prudent to assume a factor of safety and aim at maintaining a pumping

22-11056, Osaca Hillstreet Subdivision

water level of at least 5 metres above the bedrock surface. Therefore, based on the results of the simulation, scenario 2.1 is not sustainable.

Simulated drawdowns and elevations obtained for Scenario 2.2 are summarized in Table 16 and Table 17.

Groundwater Model Well ID		Simulated		Peaceman	Estimated	
	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R60 C66	153.99	138.71	15.28	24.59	129.40	120.41
R63 C57	154.70	138.68	16.02	25.08	129.62	120.41

Table 16 – Scenario 2.2 – Simulation Results – Layer 8

Table 17 – Scenario 2.2 – Simulation Results – Layer 5

		Simulated		Peaceman	Estimated	
Groundwater Model Well ID	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R68 C67	154.66	154.60	0.05	0.08	154.58	120.41
R74 C72	154.52	154.48	0.04	0.06	154.46	120.41

The results of the simulation suggest that Scenario 2.2 is sustainable.

5.4.6 Scenario 3 – Evaluation

In Scenario 3, all 38 wells installed in the model Layer 3 which corresponds to the intermediate aquifer intercepted by wells A377795, A377796 and A377799. Drawdowns and elevations were simulated after pumping at a rate of 18.75 L/min in each of the 38 wells simultaneously, for 6 hours.

Simulated drawdowns and elevations obtained for Scenario 3 are summarized in Table 18.

		Simulated		Peaceman	Estimated	
Groundwater Model Well ID	Static Water Level (masl)	Pumping Level (masl)	Drawdown (m)	Drawdown (m)	Water Level Elevation (masl)	Bedrock Elevation (masl)
R60 C66	159.66	159.55	0.11	0.36	159.30	120.41
R63 C57	161.79	161.69	0.10	0.36	161.43	120.41

Table 8 – Scenario 3 – Simulation Results – Layer 3

In Scenario 3, drawdown in the wells is less than 0.5 m and negligible between wells. The results of the simulation suggest that Scenario 3 is feasible.

5.5 Groundwater Quality

Two groundwater samples were collected from the pumping well during each pumping test in September 2024. One sample was collected 1-hour into the pumping test and the second sample was collected at the 6-hour or 7-hour mark, prior to shutting off the pump. Samples were collected in dedicated sample bottles, kept in a cooler with ice and transported to SGS immediately following completion of the field activities. Analytical results were compared to the ODWQS. The Certificates of Analysis provided by SGS are included in **Appendix C**.

The quality of the groundwater samples collected during the pumping tests complies with most ODWQS, except for the following:

A395881 Well

- Turbidity in both the 1-hour and 6-hour samples
- Total Coliform in both the 1-hour and 6-hour samples (1 cfu/100 ml)

Exceedances of the ODWQS Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

- Colour in the 6-hour sample
- Hardness and Iron in both the 1-hour and 6-hour samples

A395882 Well

- Turbidity, Sodium and Total Coliform in both the 1-hour and 7-hour samples
- E. coli in the 1-hour sample

Exceedances of the ODWQS Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

- Colour, Hardness, Iron and Chloride in both the 1-hour and 7-hour samples
- Manganese in the 1-hour sample

A395883 Well

- Turbidity, Sodium and Total Coliform in both the 1-hour and 7-hour samples
- E. coli in the 1-hour sample

Exceedances of Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

- Colour, Hardness, Iron, Manganese and Chloride in both the 1-hour and 7-hour samples
- Aluminum in the 1-hour sample

Sources for Total Coliform and E. coli can be multiple and not one specific source can be identified with certainty based on available information. However, the wells are installed on recently farmed land. Animal manure may have been used during the agricultural operations, which may have caused the contamination of the samples at surface during sampling or during well construction.

Water treatment systems for the Proposed Development should consider the exceedances noted in this section. Commercial filtration and disinfection methods may be used to effectively remove metals and inactivate any harmful protozoa, bacteria and viruses, and commercial water softening may be used to treat elevated levels of hardness.

It is noted that nitrate was not detected in any of the samples collected from wells A395881, A395882 and A395883.

6.0 Conclusions and Recommendations

Based on the results of Wills' additional investigations described in this Addendum #1, the following conclusions are provided:

 Shallow groundwater level measurements recorded during the late summer 2024 showed little difference compared to the previous measurements in October 2022 and December 2023. Additional

measurements in the spring would allow for a better evaluation of groundwater level fluctuations.

- Nitrate concentrations measured in September 2024 in the monitor wells installed by Cambium in 2022 and the three water supply wells installed in 2023 showed little difference with the concentrations measured in October and December 2023, except for the following:
 - The concentration measured in well BH110-22, installed at approximately 6 mbg in the southeast portion of the Subject Property, which increased from 2.72 mg/L in December 2023 to 4.81 mg/L in September 2024.
 - The concentration measured in well A377795, installed at 11.19 mbg in the central portion of the Subject Property, which decreased from 5.69 mg/L (average of 5.16 and 6.21 mg/L) in October 2023 to 1.18 mg/L in September 2024.
- Nitrate was not detected in any of the three O. Reg. 903 Water Supply Wells installed in 2024 on the Subject Property. These results suggest that nitrate does not migrate vertically to the deeper aquifers identified on the Subject Property (i.e. approximately 22-24 mbg and 47-49 mbg).
- The results of the pumping tests and hydrogeological modelling completed by Wills and described in this Addendum #1 suggest the following:
 - Installing any number of the proposed 38 domestic wells either in the same aquifer as the O. Reg. 903 wells installed in 2023 at a depth of approximately 10-12 mbg, or in the same coarse gravel formation intercepted by well A395881 installed in 2024 at a depth of approximately 22-24 mbg, would meet the need of the proposed development without secondary storage systems. In this configuration, Wills does not anticipate significant interactions between pumping activities on the Subject Property nor with neighboring pumping activities. It is noted that the coarse gravel formation intercepted by well A395881 is not present and/or suitable for water supply (quantity wise) everywhere on the Subject Property.
 - Safe yields for the two O. Reg. 903 Water Supply Wells installed in bedrock on the Subject Property were estimated to be 11.36 L/min (3 GPM) or lower. This implies that residential lots equipped with a well installed in bedrock would require secondary storage

to meet water demand at peak hour. Bedrock wells can be significantly variable in yield depending on whether the well has intercepted a network of water bearing fractures or not.

- Although the results of groundwater modelling suggest that the configuration where all proposed 38 wells are installed in bedrock and pumped at a reduced rate of 11.36 L/min (Scenario 1.2) is feasible, the level of interactions between pumping activities on the Subject Property is significant. Where possible, shallower water bearing formations with acceptable water quality should be the preferred option to install future drinking water wells on the Subject Property.
- The lateral extent of the water-bearing coarse gravel formation intercepted by well A395881 is unknown. Results obtained during Wills' investigations, including the review of available information about wells TW1, TW2 and TW3 installed on the property to the south, suggest that:
 - This formation is present and its water bearing capacity is suitable for drinking water supply on the portion of the Subject Property located south of well A395881.
 - This formation is either not present or its water bearing capacity is not suitable for drinking water supply anywhere else on the Subject Property.
- Assumptions above with respect to the lateral extension of the waterbearing coarse gravel formation can only be verified through exploratory drilling.
- Water treatment systems for the Proposed Development should consider the exceedances noted in **Section 5.5**.

Based on the above and satisfy the outstanding peer review comments, Wills recommends that a Monitoring Program be implemented on the Subject Property, to include:

- Prior to proposed development construction:
 - Install seven monitor wells on the Subject Property, to a depth of 6 mbg, including five wells along the downgradient limit of the Subject Property and two wells along the upgradient limit to the north and west. Proposed locations for these seven monitor wells are shown on Figure 6.
 - Record static groundwater levels in all seven monitor wells on a bi-annual basis, during the spring and summer.

- Collect groundwater samples in the seven newly installed monitor wells and the three existing MECP Water Supply Wells (A377795, A377796 and A377799) twice a year during spring and summer, for analysis of the following parameters on all samples: Nitrite, Nitrate, Organic Nitrogen, Total Coliform and E. Coli.
- Preparation of technical memo summarizing the predevelopment results on an annual basis.
- During construction of the proposed development and after, as required:
 - Collect groundwater samples in the seven newly installed monitor wells and the three existing MECP Water Supply Wells (A377795, A377796 and A377799) twice a year during spring and summer, for a period of three years. This timeframe may be extended pending the duration of construction and results obtained. This includes the recording of groundwater static levels in all wells.
 - Following each sampling event, submit all ten groundwater samples to an accredited laboratory of for analysis of the following parameters: Nitrite, Nitrate, Organic Nitrogen, Total Coliform and *E. coli*.
 - Prepare technical memos summarizing the results obtained during the groundwater monitoring activities, on an annual basis. These memos should include an analysis of the evolution of groundwater quality and appropriate recommendations with respect to the renewal of the 3-year monitoring period and any mitigation measures required.

Should the construction of the proposed development commence in the spring of 2025, Wills recommends that:

- The new monitor wells be installed during the winter 2024/2025.
- Pre-development groundwater levels be recorded, and groundwater samples collected and analysed during the winter 2024/2025 and early spring 2025.

22-11056, Osaca Hillstreet Subdivision Page 30 of 36

We trust that this information is suitable for your purposes at this time. Please contact our office if you have any questions or require clarification.

Respectfully submitted,

Ralf Bolvin, P.Eng., QPESA Project Engineer

Del Rith

David Ruttan, P.Eng. Senior Hydrogeologist/ Senior Computer Modeller

Ian Ames, P.Geo. Group Leader, Environmental Management and Monitoring RB/DR/IA/jh

FIGURES

A395883 A395881 TW2 TW1 165. Ground Surface Sand 160.95 Sand Coarse Clay and Sand Coarse 158.82 Sand Sand 158.51 156.7 Sand 155.9 Fine 155 and Sand 155 Sand Gravel Sand and Silt 152.72 and Silty Gravel and Sand 151.9 151.81 150.50 Clay Clay Clay + 147.3 and Sand 146.32 Sand 145 Coarse 145 with Silty 142.05 Clay and Sand Sand Clay Elevation (masl) and Gravel 141.75 Gravel and Gravel End of Borehole Sand 136.57 135.5 135.4 135 135 Sandy Silt Sand and Sandy Clay Coarse Gravel 131.4 Gravel and End of Borehole Gravel 125.5 125 125 Sand Silt Trace Gravel Shaley Gravel + 121.02 120.72 Sand tr. Gravel 119.0 Coarse Gravel 117.2 116.3 Limestone 115 End of Borehole Limestone 115 End of Borehole 105 105 -L 551 m Scale: See graphic scale Drawn by: Legend D.M. Wills Associates Limited R. BOLVIN **Cross Section B-B'** 150 Jameson Drive Gravel Formation Checked: Date: Peterborough, Ontario I. AMES November 14, 2024 K9J 0B9 Part of lot 27, Concession 5 P. 705.742.2297 Municipality of Port Hope WILLS F. 705.748.9944 Project No.: Drawing file No.: County of Northumberland E. wills@dmwills.com 11056 Figure 4

В

Β'

Appendix A

Comment Response Matrix as of September 24, 2024

Hydrogeological Study Report Comment Response Matrix as of September 24, 2024

3	Section	CRCA Comments - May 31, 2023 (Combined Agency Comments) The hazard limits associated with the valley slope have not been established. GRCA requires that the top of bank is identified on site and that all development (including infrastructure, filling and grading) is appropriately setback from the top of bank or long term stable slope line (whichever is greater). In this instance, a minimum 6m setback is requested. Please revise the plan accordingly. It is recommended that a site visit be undertaken with GRCA staff to identify the top of bank.	Wills Kesponse See Draft Erosion Hazard Assessment Letter Report	BluMetric Keply - May 17, 2024 No Comment.	
Comment #	Section	Blu Metric Environmental Comments – June 25, 2023	Wills' Response	BluMetric Reply - May 17, 2024	l
1	Septic System Evaluation	The Wills' evaluation indicates that the proposed 59 lots would result in unacceptable nitrate concentrations at the down gradient property boundary. BluMetric agrees that reducing the number of lots would allow the off-site nitrate discharge concentrations to be met. Wills' also suggests that advanced septic treatment system on each lot would allow for the proposed 59 lots and acceptable nitrate concentrations at the property boundary. Although this may be technically correct, the Municipality of Part Hope does not accept the use of these type of systems for individual lots. BluMetric agrees with the Municipality since continued effective use of the system is left to the responsibility of the individual lot owner. This is not always done by the owners and is also difficult for the Municipality to enfarce.	The number of lots has been reduced to 40 residential lots as shown on the Preliminary Draft Plan prepared by D.G. Biddle & Associates Limited on February 21, 2024, included in Appendix A-2 of Wills' Hydrogeological Study Report. With 40 lots, the objective of 10.0 mg/L is met at the property boundary. There is no need for advanced treatment, as discussed in Section 6 of Wills Hydrogeological Study Report.	Noted.	
2	Septic System Evaluation	The Wills' evaluation suggests utilizing the middle of the percolation time range. This may be appropriate for medium to well drained soils, but the middle portion of the site has a lower percolation rate (estimated by Wills at >60 min/cm). Installing septic systems in this type of soil should include the use of raised file beds and a re-evaluation of minimum set back distances.	The recommendation has been added in Section 4.1 and in the Conclusions.	The use of raised beds and the re-evaluation of minimum set-backs distances should be completed by the consultant on a lot-by-tot basis or at least made a condition of approval.	h
3	Septic System Evaluation	The Wills' nitrate calculations assume a background nitrate value of 0.53 mg/L based on the average collected from 8H107-22 and 8H110-22. Both wells are completed at depths of 2.6 to 6.1 m below ground sufface. BH107-22 was completed in both shallow sand and clayey silt and BH110-22 in sand. The overall depths of the wells may not be representative of shallow nitrate concentrations and the discharge depths for the seplic systems. Wills disregarded the nitrate concentration of 4.36 mg/L from the shallow monitor MW22-08 since it was likely the result of agricultural activities over many years. BluMetric agrees with the statement and the concentration observed is in keeping with the average background nitrate concentrations 0.3.3 mg/L determined by Wills for the proposed development beat weight is and known why it was not used for the present proposed development. Everated nitrate concentrations in the shallow groundwater cannot be dismissed because of the previous land use and no prediction has been provided of nitrate reduction in former agricultural fields wilhout any further nitrate loading. The higher values observed an the wo site is very common throughout southern Ontario in agricultural settings. Further assessment of background nitrate concentrations and calculations will be required.	Additionnal water samples were collected from wells BH101-22, BH107-22 and BH110-22 in December 2023. The new assessment is based on the average of all six nitrate concentrations measured in wells MW22-08, BH101-22, BH107-22 and BH110-22 in October 2022 and December 2023 (i.e. 2.86 mg/l), including the one previously dismissed. Section 6 has been updated to include Wills expectation with respect to nitrate levels after development.	There is a discrepancy in the nitrate calculations in the report. Based on the values in Table 15, the total nitrate loading would be 2.053,115 mg/day, resulting in a nitrate concentration at the property boundary of 10.35 mg/L. The Water Balance Assessment in Appendix J shows a total nitrate loading of 1.983,534 mg/day resulting in a nitrate concentration of 10.00 mg/L at the property boundary. The discrepancy needs to be corrected. Even if the calculations in Appendix J are correct, the nitrate concentration at the property boundary is at the maximum concentration allowed. Therefore, a monitoring program of groundwater quality for at least nitrate (but other health related parameters should also be included) should be conducted for a minimum of 3 years post-development. At that time, a re-evaluation of the need for continued monitoring could be completed.	Table 15 has been Appendix J. Agreed regarding program will be de Wills understands It condition of appro
4	Septic System Evaluation	BluMetric agrees with Wills' conclusion that shallow groundwater depth could affect the design of septic systems on individual lots. Groundwater depths were only measured during the fall of 2021 and 2022. Additional groundwater monitoring is required to determine any seasonality in groundwater elevations.	Another round of groundwater level measurements in the three on-site monitor wells installed by Cambium Inc is scheduled for the spring 2024, as stated in Section 3.3.1.	Thre rounds of water levels, two in the fall and one in the spring (2024) is not sufficient to determine seasonal trends. An ongoing water level monitoring program (spring and summer) should be conducted pre-development and for a minimum of 3 years post-development. At that time, a re-evaluation of the need for continued monitoring could be completed.	Noted and agreed level monitoring a
5	Septic System Evaluation	Bludetric agrees with the Wills' Environmental Impact Study that concludes that site grading and drainage features should be designed to ensure full function of the wetland feature at the north end of the property. Enhanced infiltration using soak away pits on lots adjacent to the wetlands may be adequate to achieve this, although this may not be sufficient given the surface water and shallow groundwater flow to the southwest and away from the wetlands. There should be an evaluation on whether the septic systems in the northwest corner of the property (Lots 65-59) will have any detimental impacts to the functionality of the wetlands. Nitrate loadings entering the wetlands would be expected to be above 10 mg/L given short flow path between the leaching beds and the wetlands.	Lots 56-59 have been removed from the development. All developed areas have been moved outside of the 30 m setback from wetlands.	Agree.	
ó	Water Supply Potential	Wills' opines that the conditions at Wienfield Subdivision extend onto the 5868 property and they therefore conclude it is likely that adequate water supply can be melt for individual lots. Further work is required to come to this conclusion. Wills' does, however, acknowledge that a full investigation on the 5868 property, including the drilling of water supply wells and aquifer testing, is required to ensure the required volumes and water quality for individual wells, and indicates that this is scheduled to be completed in 2023. We agree with this recommendation and the completion of this work is paramount before any draft plan approval for the development is provided. The 2023 investigation proposed by Wills should include drilling at least three water supply wells, preferably completed with the deeper overburden units. The wells must be screened as opposed for the open-bottomed wells as installed at the Wienfield Subdivision. Each well should be pumped for a minimum of 6 hours while measuring water levels in the other test wells, all available monitoring wells and private wells, if available. Normal geochemical testing during the test will be required.	The Hydrogeological Study Report has been updated to include the results of: - Three pumping tests completed on three O. Reg. 903 water wells installed on the Property in 2023. - Hydrogeological modelling based on the results of the pumping tests.	The testing completed indicates that the overburden has the capabilities of producing sufficient water for each of the 40 lots. Total coliform was detected in one well in the 6-hr sample along with arganic nitragen in both the 1-hr and 6-hr. The nitrate concentrations were 5.16 mg/L and 6.21 mg/L. Another well had both the 1-hr and 6-hr samples with total coliform and nitrate concertains of 1.84 mg/L and 1.82 mg/L. These results are not adressed in the report other than indicating water treatment systems should be considered. This is not sufficient. How did the coliform, arganic nitragen and relative high value of nitrate (in one well) get into the wells? It is indicative of near surface techarge and what is the source of the contaminants? This also affect the answer to Point 8 below. An organity monitoring program groundwater quality for a minimum of 3 years post development is recommended. At that time, a re-evaluation of the need for continued monitoring could be completed. The monitoring program should be a condition of approval.	The report states "[A377795, A377796 of this point. The presence of Tc coliform can be m on available inforr covered in crops v used in this field w during well constr. explain the presen of the report. Wills agrees with if minimum 3-year p investigating the a either a deeper gr sufficient groundw proposed develop late Fall 2024, and program. Wills un monitoring (if requ
7	Water Supply Potential	Potential well interference between wells on the site as wells as adjacent private wells must be evaluated. Given the potentially 20 lots to the south, 19 lots to the west and up to 59 lots on the site, the potential cumulative interference effects must be assessed quantitatively using field data derived from pumping tests. The use of up to 88 wells in a relatively small area must be fully evaluated to ensure that all wells will always be able meet the peak water demands. There is not much data on vertical gradients or any potential connection between the deeper overburden	The impact on neighbouring pumping activities is adressed in the updated report, on the basis of the hydrogeological modelling completed.	The report indicates there would be minimal effects from the pumping of the wells at the proposed development on the Village of Osaca wells and a slightly greater effect on the subdivision to the south. For clarity purposes, would these effects be consistent with those shown in Figures 5 and 6? The figures indicate <0.1 m for the wells in Osaca and 0.1 m to 0.7 m for the subdivision.	Simulated cumula 6, as indicated in s See Conclusion for subdivision to the s
8	Water Supply Potential	counter and the shallow aquiter The calculations should also determine if the predicted cumulative impacts could draw the shallow groundwater that will be impacted with nitrates deeper in the overburden and affect long term deeper aquifer groundwater quality	The Hydrogeological Study Report has been updated to include the results of: - Three pumping tests completed on three O, Reg. 903 water wells installed on the Property in 2023. - Hydrogeological modelling based on the results of the pumping tests.	The Hydrogeological Study Report does not specifically state that the pumping of the 40 wells would not draw niltrates and other contaminants from the on-site septic systems onto the wells. The data presented appears to support this conclusion, but should be explicitly stated by the consultant. However, if this is the case, then how is point 6 above explained.	Based on the avail contaminants from topic is provided in menfloned in secti Will's suggests: - Monitor groudwa cessation of agricu- - Pump test and sa groundwater mod development.
Comment #	Section	Municipality of Port Hope Comments – May 25, 2022	Wills' Response	BluMetric Reply - May 17, 2024	
1		- Detailed hydrogeological and soil analysis report will be required The subject lands contains various natural heritage features such as significant woodlands, short and long term natural cover, unevaluated wellands and physical constraints i.e. valleylands. The applicant would need to submit an Environment Impact Study, as per Section C20.3 of the OP and may need to submit slope stability study. Consultation should be done with GRCA.	See Will's Environmental Impact Study, Hydrogeological Study Report and Draft Erosion Hazard Assessment Letter Report.	No comment.	
Comment #	Section	Municipality of Port Hope Comments – May 10, 2023	Wills' Response	BluMetric Reply - May 17, 2024	(
1		Submitted by the applicant was the Hydrogeological Study, by D.M. Wills Associates Limited, dated December 2022. In this report on page 12 the following was noted. "The Gorundwater Impact Assessment concludes that a groundwater nitrate concentration of 10.7 mg/L will be achieved at the property boundary, which exceeds the ODWS and does not satisfy the requirements of D-5-4. The following mitigation options are provided: of the number of lots is maintained at 59. Each proposed sewage disposal system would require advanced treatment to ensure that effluent leaving the system does not contain more than 37 mg/L nitragen. o Alternatively, If the number of lots is reduced to 53, conventional sewage disposal systems (nitrate loading of 40 mg/L) without advanced treatment would result in acceptable nitrate concentrations at the property boundaries."	The number of lots has been reduced to 40 residential lots as shown on the Preliminary Draft Plan prepared by D.G. Biddle & Associates Limited on February 21, 2024, included in Appendix A-2 of Wills' Hydrogeological Study Report. With 40 lots, the objective of 10.0 mg/L is met at the property boundary, without any advanced treatment, as discussed in Section 6 of Wills Hydrogeological Study Report.	See comment 6 above.	

Wills' Response - August 29, 2024 Wills' Response - Agust 29, 2024 Noted and agreed with making this a condition of approval.

a corrected to be consistent with The Water Balance Assessment included in

g the minimum 3-year post development monitoring program. A monitoring seveloped by Wills and submitted to the Municicapility for approval in Fall 2024. the the peer reviewer agrees to making the monitoring requirements a roval.

d. Wills understands that the peer reviewer agrees with making the water a condition of approval.

[...] that nitrate concentrations for all tested samples collected from wells 6 and A377799 met the ODWQS". See answer to comment 8 for further analysis

Total Coliform in the samples is acknowledged in the report. Sources for multiple, and not one specific source can be identified with certainly based smation. However, the wells are installed on currently farmed land which was swhen the pumping tests were completed. Animal manure may have been which may have caused the contamination of the samples during sampling or traction. Similarly, fettilizer high in hitrogen may have been used, which could ence of Organic Nitrogen. This assessment has been included in section 3.5.6

the recommendation to monitor groundwater quality and implement a post development monitoring program. In addition, Wills has begun e deeper aquiter on the Subject Property (3 deeper drilled wells intercepting gravel layer or at the bedrock-overburden interface) to determine whether avater quantity and quality (e.g. graduater anticipate) is available to support the opment. The results of this investigation are anticipated to be completed in at may miligate the need for the 3-year post development monitoring understands that the peer reviewer agrees with making the post development quired) a condition of approval.

ative drawdowns are consistent with drawdowns shown in Figure 5 and Figure section 5.3.5 of the report.

or clarification on anticipated impact on the Village of Osaca and the south.

alibale data, it cannot be excluded that pumping in the 40 wells may draw m the septic systems to the water supply wells. Additional information on this in Wills' accompanying letter. Wills' assessment relies in part on the 2018 Report ction 5.2 of Wills' Hydrogeological Study Report.

ater quality to confirm the reduction in nitrate concentration following the ultural activities on the property. ample the three new deep wells on the Subject Property and update the del to confirm if the deeper aquifer is suitable to support the proposed

Wills' Response - August 29, 2024

Wills' Response - August 29, 2024

See answer to comments 6 and 8 above.

Appendix B

Preliminary Draft Plan – D.G. Biddle & Associates Limited – August 15, 2024

Appendix C

Certificates of Analysis – Groundwater

CA12213-OCT22 R----

11056 - OSAC.A

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS		LABORATORY DETAILS	3
Client	D.M. Wills -Peterborough	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Lynsey Tuters	Telephone	705-652-2143
Telephone	289-385-6230	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	brad.moore@sgs.com
Email	ltuters@dmwills.com	SGS Reference	CA12213-OCT22
Project	11056 - OSAC.A	Received	10/05/2022
Order Number		Approved	10/18/2022
Samples	Ground Water (3)	Report Number	CA12213-OCT22 R
		Date Reported	10/18/2022

COMMENTS

Temperature of Sample upon Receipt: 20 degrees C

Cooling Agent Present: Yes

Custody Seal Present: Yes

Chain of Custody Number: 031488

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3
Exceedance Summary	4
QC Summary	5-6
Legend	7
Annexes	8

Client: D.M. Wills -Peterborough

Project: 11056 - OSAC.A

Project Manager: Lynsey Tuters

Samplers: L. Tuters

MA	TRIX: WATER			:	Sample Number	5	6	7
					Sample Name	11056 - MW22 -	11056 - MW05 -	11056 - MW11 -
						08	Geotech3	Geotech 2
L1 =	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	ater - Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water
					Sample Date	05/10/2022	05/10/2022	05/10/2022
F	Parameter	Units	RL	L1		Result	Result	Result
Me	tals and Inorganics							
1	Nitrite (as N)	as N mg/L	0.03	1		< 0.03	< 0.03	< 0.03
-	Nitrate (as N)	as N mg/L	0.06	10		4.35	0.39	0.68

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover (%	y Limits
						(70)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0214-OCT22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0214-OCT22	mg/L	0.03	<0.03	ND	20	93	90	110	95	75	125
Nitrate (as N)	DIO0214-OCT22	mg/L	0.06	<0.06	0	20	99	90	110	NV	75	125
Nitrate + Nitrite (as N)	DIO0229-OCT22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0229-OCT22	mg/L	0.03	<0.03	0	20	94	90	110	84	75	125
Nitrate (as N)	DIO0229-OCT22	mg/L	0.06	<0.06	0	20	100	90	110	96	75	125

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

Industries & Environment - Lak	kefield: 185 Concess	sion St., Lakefi	ield, ON KOL	2H0 Phone: 70	5-652-20	000 Fax	: 705-6	52-636	5 Web		GS.com	OF n/enviro	onmen	t	JT	-							^{No:} 03148
	- London: 657 Con	nsortium Court,	, London, ON	, N6E 2S8 Phor	ne: 519-6	572-450	0 Toll	Free: 87	77-848	-8060 F	ax: 51	9-672-0	0361		ila Trans			2	1797 N 221808 - 11	1 7 - 7 (± 0)	т. Полого		of
Received By: Sindoon Sather	sh	Received By	(signature):	X			maur		cuon	- Lau	use	Unity											
Received Date:	yy) '-	Custody Sea	al Present: Y	res No [7		Coolir Temp	ng Ager erature	nt Pres Upon	ent: Y Receip	es 🚺	20		Type: IC-C						L	CH BLIMS#	Id	213-040
REPORT INFORMATION	IN	VOICE INFO	ORMATION		T	e tradender.	· onip		opon			<u> </u>			-							•	
Company: D. M. WILS	Same as R	Report Inform	ation)		Quota	ation #					6426336953		6638333	100000000 ,			P	ר, <i>#י</i>	110	st			
Contact: 1 THENS	Company:				Proje	ct #: \	165	2-	65	A	A				.5		Si	e Locatio	on/ID:				
Address: 150 Jameson Dr.	Contact:						/						Т	URNA	ROUN	ID TIN	E (TAT)	REQUIR	RED				
peterboraush	Address:	14	1			UR	egular	TAT (5-7day	ys)							TAT's Same	are quote les receiv	ed in bu ed afte	isiness d r 6pm or	ays (exclu on weeke	de statute nds: TAT	ory holidays & weekends).
Phone: 289-385-6230					RUSH	I TAT	(Addit	ional	Charg	rges May Apply):			<u> </u>	Day	20	ays 🔽	3 Days	41	Days	-			
ax:	Phone:				PLEA	SE CO	DNFIR	M RUS	SH FE	ASIBI	LITY V	VITH S	SGS F	REPRE	SENT	TATIV	E PRIOF	TO SUE	BMISS	ION		1	
mail: Wersedmulk.com		inter a	Imal	1c.com	Speci	fy Due	Date:						*NO	TE: DR	RINKIN	G (PO	ABLE) W	ATER SA		FOR H	JMAN CC		ION MUST BE SUBMITTED
REGI	ULATIONS	CIDEO		<u>13: COm</u>		Y. A.					A	NA	LYS	IS R	EQ	UES	TED	SC DIANA					•
O.Reg 153/04 O.Reg 406/19	Other Regula	ations:	Sew	ver By-Law:		М	& I		SV	VOC PCB PHO			НС	VC	C	Pest		Other (p	lease sp	becify)	SPL	PTCLE	>
Table 1 Res/Park Soil Texture:	Reg 347/55	8 (3 Day min 1	TAT)	Sanitary			1		and and		. a			1. J.S.	No. 3						Speci	fy Specify	
Table 2 Ind/Com Coarse		MMER Other:	No.	Storm	here		- 1	, p													test	s tests	
Table Appx	MISA			mcipanty.		(lios	ž	Be,B,O		No.	rocloi				2					ka		al in	and the set
Soil Volume	DODWS Not	Reportable *S	ee note	- 4 ₀		ics ,sar-	Hg, C	As,Ba,			A	1		A						on P		als M&I	
RECORD OF SITE CONDITION (RSC)	YES] NO			XN	gan vs).ec	uite ^{bil only})	y sb.								y other				izati			COMMENTS:
	Sec. 200	1.1.1	A Marine Sta) pa	HIN HIN	s SL	Se,Ag.		. CPs	Fotal	LEX		->0		specif	F			cter	Щ 1,4- Ш Dioxi		
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filter	Metals & I ncl CrVI, CN,Hg ph CI, Na-water)	Full Metal	CP Metals r,Co,Cu,Pb,Mo,Ni	AHs only	SVOCS Il incl PAHs, ABNs	CBs	-1-F4 + B1	-1-F4 only o BTEX	/OCS Il incl BTEX	STEX only	esticides rganochlorine or	NITYA			iewer Use: pecify pkg: Vater Chara		AB(a)	
11056 - MW22-08	oct 5/22	AM	1	610	-	0	bila S	- 0		500			H c	9		<u>u o</u>	V			0 0 >	0		
2 11056-MW05-Geotech3	at5122	AM	(GW	and a			63									V			5			
1/056-MW11-GROLEDZ	oct 5/22	AM	111	GW					1		_			а 2 ⁴			1						
1 · · · · · · · · · · · · · · · · · · ·			124	0100	NRS-36								19.00	1									
5				-	1010 0 400 1010 0 400 1010	and the second s											1	10					
3					4.98			N213 1999 1997			1 X 1					<u></u>	1				-		4
7				18 No. 7		- 597 3. 2945			in the						-+	121	1				-		
2								84.) 40.1							_		<u>k</u>				_	-	
			1 (A) (349)		and have				1						1		×		-		_	12517104	
5 		4			SHE'LL			91 									1		_	22			
0		10	1		10011555			i de					410 				ř.						
1		199 1	5.7	nan ya Shi 100 Sa	0							A.S.S.S.					1			-			
2			1. Contraction of the second s	e de la composition de la comp	2°	1	ý	in the second se															
bservations/Comments/Special Instructions						i i			1 Sara			1		at i									
			0	470	L_ 1	der -	1	1		lan e e		1448	2 142		Date:	A	105	170	22	(mm/	d(m)		Dist Orac Olivert
ampled By (NAME): L. TUBK	ф.		Signature:	AUT	ONI																		PINK CODY - Client
elinquished by (NAME):	ф. 2		Signature: Signature:	o feit	er	n	À	į.		A	÷.	2 ³⁴		I	Date:	it	105	170	in	(mm/	id/yy)	-	Yellow & White Copy - SG

CA19813-OCT23 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	i	LABORATORY DETAIL	S
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA19813-OCT23
Project	11056	Received	10/31/2023
Order Number		Approved	11/07/2023
Samples	Ground Water (2)	Report Number	CA19813-OCT23 R1
		Date Reported	11/07/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 5 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 037594

Phenol Spk low due to sample matrix

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-19
Legend	20
Annexes	21

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

ATRIX: WATER			Sa	ample Number	7	8
				Sample Name	11056 Well	11056 Well
					A377795_1 hr	A377795_6 hr
1 = ODWS_AO_OG / WATER / Table 4 - Dri	nking Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3	- Drinking Water - Reg O.169_03			Sample Date	31/10/2023	31/10/2023
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry						
UV Transmittance	%Т				94.3	93.4
Alkalinity	mg/L as CaCO3	2	500		221	213
Bicarbonate	mg/L as CaCO3	2			221	213
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		< 3	3
Conductivity	uS/cm	2			480	479
Total Suspended Solids	mg/L	2			< 2	< 2
Turbidity	NTU	0.10	5	1	1.9	3.1
Organic Nitrogen	mg/L	0.05	0.15		0.76	0.50
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.77	0.51
Ammonia+Ammonium (N)	as N mg/L	0.04			< 0.04	< 0.04
Dissolved Organic Carbon	mg/L	1	5		1	1
Total Organic Carbon	mg/L	1			1	1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			S	ample Number	7	8
				Sample Name	11056 Well	11056 Well
					A377795_1 hr	A377795_6 hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wa	ater - Reg 0.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinkin	ng Water - Reg O.169_03			Sample Date	31/10/2023	31/10/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics						
Fluoride	mg/L	0.06		1.5	< 0.06	< 0.06
Bromide	mg/L	0.3			< 0.3	< 0.3
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	5.16	6.21
Sulphate	mg/L	2	500		11	13
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		244	239
Aluminum (total)	mg/L	0.001	0.1		0.007	0.003
Arsenic (total)	mg/L	0.0002		0.01	< 0.0002	< 0.0002
Boron (total)	mg/L	0.002		5	0.010	0.012
Barium (total)	mg/L	0.00008		1	0.00821	0.00903
Beryllium (total)	mg/L	0.000007			< 0.000007	< 0.000007
Bismuth (total)	mg/L	0.00001			< 0.00001	< 0.00001
Cobalt (total)	mg/L	0.000004			0.000135	0.000073
Calcium (total)	mg/L	0.01			90.8	88.8
Cadmium (total)	mg/L	0.000003		0.005	< 0.000003	< 0.000003
Copper (total)	mg/L	0.0002	1		0.0021	0.0019
Chromium (total)	mg/L	0.00008		0.05	0.00029	0.00027
Iron (total)	mg/L	0.007	0.3		0.124	0.032
Potassium (total)	mg/L	0.009			0.442	0.469
Magnesium (total)	mg/L	0.001			4.06	4.16

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

IATRIX: WATER			S	ample Number	7	8
				Sample Name	11056 Well	11056 Well
					A377795_1 hr	A377795_6 hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - R	leg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wat	er - Reg O.169_03			Sample Date	31/10/2023	31/10/2023
Parameter	Units	RL	L1	L2	Result	Result
Aetals and Inorganics (continued)						
Manganese (total)	mg/L	0.00001	0.05		0.00666	0.00284
Molybdenum (total)	mg/L	0.00004			0.00036	0.00059
Nickel (total)	mg/L	0.0001			0.0006	0.0004
Sodium (total)	mg/L	0.01	200	20	2.63	2.56
Phosphorus (total)	mg/L	0.003			< 0.003	< 0.003
Lead (total)	mg/L	0.00009		0.01	< 0.00009	< 0.00009
Silicon (total)	mg/L	0.02			3.69	3.66
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			0.155	0.155
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			0.00011	0.00021
Titanium (total)	mg/L	0.00007			0.00026	0.00010
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	0.00004	0.00012
Uranium (total)	mg/L	0.000002		0.02	0.000264	0.000281
Vanadium (total)	mg/L	0.00001			0.00023	0.00020
Zinc (total)	mg/L	0.002	5		0.003	0.002
Cation sum	meq/L	-9999			5.00	4.90
Anion Sum	meq/L	-9999			5.00	4.88
Anion-Cation Balance	% difference	-9999			0.06	0.24
Ion Ratio	none	-9999			1.00	1.00

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			8	Sample Number	7	8
				Sample Name	11056 Well	11056 Well
					A377795_1 hr	A377795_6 hr
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wate	ter - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	g Water - Reg O.169_03			Sample Date	31/10/2023	31/10/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Total Dissolved Solids (calculated)	mg/L	-9999			257	252
Conductivity (calculated)	uS/cm	-9999			500	489
Langeliers Index 4° C	@ 4° C	-9999			0.14	0.09
Saturation pH 4°C	pHs @ 4°C	-9999			7.65	7.67
Microbiology						
Total Coliform	cfu/100mL	0		0	0	1
E. Coli	cfu/100mL	0		0	0	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			740	117
Other (ORP)						
рН	No unit	0.05	8.5		7.79	7.76
Chloride	mg/L	1	250		9	9
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			< 0.002	< 0.002

EXCEEDANCE SUMMARY

				ODWS_AO_OG / WATER / Table 4 - Drinking Water -	ODWS_MAC / WATER / Table 1,2 and 3 -
				Reg O.169_03	Drinking Water -
					Reg 0.169_03
Parameter	Method	Units	Result	L1	L2
1056 Well A377795_1 hr					
Organic Nitrogen		mg/L	0.76	0.15	
Turbidity	SM 2130	NTU	1.9		1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	244	100	

11056 Well A377795_6 hr

Organic Nitrogen		mg/L	0.50	0.15	
Total Coliform	OMOE	cfu/100mL	1		0
	MICROMFDC-E3407A				
Turbidity	SM 2130	NTU	3.1		
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	239	100	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		e LCS/Spike			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 5)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Alkalinity	EWL0113-NOV23	mg/L as CaCO3	2	< 2	1	20	96	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	CS/Spike Blank		м		
	Reference			Blank	RPD	AC (%)	Spike	Recover	ry Limits 6)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0040-NOV23	mg/L	0.04	<0.04	ND	10	100	90	110	93	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recover	y Limits 6)
						(%) Recovery (%)		Low	High	(%)	Low	High
Chloride	DIO5006-NOV23	mg/L	1	<1	11	20	104	80	120	106	75	125
Sulphate	DIO5006-NOV23	mg/L	2	<2	ND	20	102	80	120	105	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Bromide	DIO0147-NOV23	mg/L	0.3	<0.3	ND	20	103	90	110	99	75	125
Nitrite (as N)	DIO0147-NOV23	mg/L	0.03	<0.03	19	20	100	90	110	103	75	125
Nitrate (as N)	DIO0147-NOV23	mg/L	0.06	<0.06	0	20	99	90	110	84	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Duplicate LC		S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0038-NOV23	mg/L	1	<1	1	20	97	90	110	95	75	125
Total Organic Carbon	SKA0038-NOV23	mg/L	1	<1	1	20	97	90	110	95	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recover (%	y Limits 6)	Spike Recovery	Recovery (%	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Carbonate	EWL0113-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0113-NOV23	mg/L as CaCO3	2	< 2	1	10	NA	90	110	NA		
ОН	EWL0113-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD AC	AC Spike		ike (%)		Recovery Limits (%)			
						(%)	(%)	Low	High	(%)	Low	High	
Colour	EWL0037-NOV23	TCU	3	< 3	0	10	105	80	120	NA			

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	(%)		6)	Recovery	(%)	
						(70)	(%)	Low	High	(%)	Low	High
Conductivity	EWL0113-NOV23	uS/cm	2	< 2	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover (୨	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Fluoride	EWL0035-NOV23	mg/L	0.06	<0.06	ND	10	97	90	110	98	75	125
Fluoride	EWL0090-NOV23	mg/L	0.06	<0.06	0	10	96	90	110	96	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC Spike	Spike	Spike (%)		Spike Recovery	Recovery Limits		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Mercury (total)	EHG0005-NOV23	mg/L	0.00001	< 0.00001	13	20	101	80	120	100	70	130	

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery	Recover	y Limits
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0028-NOV23	mg/L	0.00005	<0.00005	ND	20	102	90	110	73	70	130
Aluminum (total)	EMS0028-NOV23	mg/L	0.001	<0.001	9	20	100	90	110	90	70	130
Arsenic (total)	EMS0028-NOV23	mg/L	0.0002	<0.0002	6	20	97	90	110	100	70	130
Barium (total)	EMS0028-NOV23	mg/L	0.00008	<0.00008	2	20	97	90	110	96	70	130
Beryllium (total)	EMS0028-NOV23	mg/L	0.000007	<0.000007	ND	20	98	90	110	97	70	130
Boron (total)	EMS0028-NOV23	mg/L	0.002	<0.002	5	20	107	90	110	95	70	130
Bismuth (total)	EMS0028-NOV23	mg/L	0.00001	<0.00001	ND	20	91	90	110	97	70	130
Calcium (total)	EMS0028-NOV23	mg/L	0.01	<0.01	2	20	102	90	110	100	70	130
Cadmium (total)	EMS0028-NOV23	mg/L	0.000003	<0.000003	2	20	100	90	110	106	70	130
Cobalt (total)	EMS0028-NOV23	mg/L	0.000004	<0.000004	7	20	101	90	110	99	70	130
Chromium (total)	EMS0028-NOV23	mg/L	0.00008	<0.00008	15	20	101	90	110	85	70	130
Copper (total)	EMS0028-NOV23	mg/L	0.0002	<0.0002	3	20	98	90	110	81	70	130
Iron (total)	EMS0028-NOV23	mg/L	0.007	<0.007	4	20	97	90	110	100	70	130
Potassium (total)	EMS0028-NOV23	mg/L	0.009	<0.009	4	20	101	90	110	99	70	130
Magnesium (total)	EMS0028-NOV23	mg/L	0.001	<0.001	5	20	99	90	110	98	70	130
Manganese (total)	EMS0028-NOV23	mg/L	0.00001	<0.00001	3	20	98	90	110	97	70	130
Molybdenum (total)	EMS0028-NOV23	mg/L	0.00004	<0.00004	1	20	106	90	110	107	70	130
Sodium (total)	EMS0028-NOV23	mg/L	0.01	<0.01	4	20	97	90	110	95	70	130
Nickel (total)	EMS0028-NOV23	mg/L	0.0001	<0.0001	1	20	100	90	110	98	70	130
Lead (total)	EMS0028-NOV23	mg/L	0.00009	<0.00009	ND	20	99	90	110	76	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover (%	ry Limits %)	
						(%)	(%)	Low	High	(%)	Low	High	
Phosphorus (total)	EMS0028-NOV23	mg/L	0.003	<0.003	3	20	100	90	110	NV	70	130	
Antimony (total)	EMS0028-NOV23	mg/L	0.0009	<0.0009	ND	20	109	90	110	106	70	130	
Selenium (total)	EMS0028-NOV23	mg/L	0.00004	<0.00004	ND	20	98	90	110	99	70	130	
Silicon (total)	EMS0028-NOV23	mg/L	0.02	<0.02	4	20	105	90	110	NV	70	130	
Tin (total)	EMS0028-NOV23	mg/L	0.00006	<0.00006	3	20	106	90	110	NV	70	130	
Strontium (total)	EMS0028-NOV23	mg/L	0.00008	<0.00008	4	20	101	90	110	100	70	130	
Titanium (total)	EMS0028-NOV23	mg/L	0.00007	<0.00005	9	20	108	90	110	NV	70	130	
Thallium (total)	EMS0028-NOV23	mg/L	0.000005	<0.000005	7	20	96	90	110	99	70	130	
Uranium (total)	EMS0028-NOV23	mg/L	0.000002	<0.000002	1	20	99	90	110	102	70	130	
Vanadium (total)	EMS0028-NOV23	mg/L	0.00001	<0.00001	8	20	97	90	110	96	70	130	
Zinc (total)	EMS0028-NOV23	mg/L	0.002	<0.002	3	20	103	90	110	123	70	130	

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-IENVIMIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recover	Recovery Limits Spike (%) Recovery		Recovery Limits (%)	
						(70)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9011-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Heterotrophic Plate Count (HPC)	BAC9011-NOV23	cfu/1mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9011-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recoverv	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0113-NOV23	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank		Matrix Spike / Ro		
	Reference			Blank	RPD AC	Spike	Spike (%)		Spike Recovery	Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0023-NOV23	mg/L	0.002	<0.002	ND	10	100	80	120	60	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м				
	Reference			Blank	RPD	AC	Spike	Spike	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	Recovery	(%)		Recovery	(%)			
						(70)	(%)	Low	High	(%)	Low	High		
Sulphide	SKA0030-NOV23	mg/L	0.02	<0.02	ND	20	94	80	120	NA	75	125		

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate LC:		LCS/Spike Blank			atrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike (%)		Spike Recoverv	Recover	y Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0120-NOV23	mg/L	2	< 2	5	10	95	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank		Matrix Spike / F		
	Reference Blank	Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)			
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0045-NOV23	mg/L	0.05	<0.05	5	10	101	90	110	89	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м		
	Reference			Blank	RPD	RPD AC		Recove	ry Limits	Spike	Recover	y Limits
						(%)	(%)		Recovery	(%)		
							(%)	Low	High	(%)	Low	High
Turbidity	EWL0027-NOV23	NTU	0.10	< 0.10	0	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --
	- London: 657 Cons	ortium Court, L	ondon, ON, N	I6E 2S8 Phon	e: 519-	672-450	0 Toll F	ree: 87	7-848-	8060 F	ax: 519	-672-0)361		le Ref. W		1000				10.00	1	Page of
Received By:		Received By (signature):	Labo			matio	n sec	uon	- Lau	uset	illy											
Received Date: 10 / 31 / 23 (mm/dd/y Received Time: 17 : 00 (hr : min)	y)	Custody Seal Custody Seal	Present: Yes Intact: Ye	s No			Coolin Tempe	g Agen erature	t Prese Upon F	nt: Ye Receipt	s 🔽 (°C)	No [3	Гуре:						LAB	LIMS #:	ca	19813-
REPORT INFORMATION	, IN	VOICE INFO	RMATION																				OCt2
company: DM WILLS	(same as R	eport Informa	tion)		Quotation #: P.O. #:/056																		
contact: RALF BULVIN	Company:				Project #: 11000 Site Location/ID: TURNAROUND TIME (TAT) REQUIRED																		
ddress: 155 JAMESON DIZIVE	Contact:				TAT's are quoted in business days (exclude statutory holidays & weekend																		
TELEXBURY 014 014	Address:				Samples received after 6pm or on weekends: TAT begins next business da																		
none: <u>705 000 1011</u>	Phone:					PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION																	
- Chabria & donnille com	Email: accounts @ dawyills.com					Specify Due Date: *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTI											ON MUST BE SUBMITT						
mail: 1 OOTVINGOUNINI / COV	JLATIONS		1000.112		1						A	NA	LYS	IS F	REQ	UEST	ED	, Branne					
O.Reg 153/04 0.Reg 406/19	Other Regula	tions:	Sewe	er By-Law:	-	M	& I		SV	oc	PCB	PI	IC	VC	C	Pest	Ot	her (pl	ease spec	ify)	SPLF	TCLP	
Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium/Fine Table Appx Soil Volume >350m3	Reg 347/55	8 (3 Day min Tr MMER Other: Reportable *Se	AT)] Sanitary] Storm icipality:		ICS SAR-soil)	Hg, CrVI	As,Ba,Be,B,Cd, n			Aroclor									on Pkg	Specify tests	s CM&I	COMMENTS
RECORD OF SITE CONDITION (RSC)	YES] NO			(NIN)	gani ws),ec	uite oil only)	Iy sb,								ify other		No.		rizati			COMMENTS
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered (Metals & Inor ind CrVI, CN,Hg pH,(B(H	Full Metals SI ICP metals plus B(HWS-s	ICP Metals on Cr,Co,Cu,Pb,Mo,Ni,Se,Ag	PAHs only	SVOCS all inci PAHS, ABNs, CPs	PCBs Total	F1-F4 + BTEX	F1-F4 only no BTEX	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or spec			Sewer Use:	Specify pkg: Water Characte		B(a)P	
1 11056 Well A377795-1hr	Oct 31/23	11:00 AM	13	GW	N	100.00			Sec.		5.2			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						X			
2 11056 Well A377795-6hr	OCT 31/23	4:00 PM	13	GW	N									199						X			
3	The second states	Sec. Sec.	and the second		1									- Stat							11		
4	1.4						1.11	À.,															
5	Act - I		Sec. La	1.1.6.													4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
6		Star and	1.1	1										1			1.00	8. C.					
7					Pa.		1.3	1.1							14-1				19		1.1		
8	x.+				1		1.39				12			22			1.2	151	1 30	in the second	a de la come		
9		1													-								
0		1.1	5.									1.2.4						1					
11	1. S. 1. 1.					t"				100	d Martin												
12		1. 1. 18				1	1.14				5. 1910												
I Dbservations/Comments/Special Instructions	Barge or sources	્રાષ્ટ્ર		240	101000		1.000	1	Lane disente		15			10 00 10 10 10 10			1 100	1.0	inde l		1		An Angele
Sampled By (NAME): MILDIG OGAL			Signature	Olin	. (Jahr	Fu .		-1.2	· · · k			Sec.	5.857	Date	10	21	11	3	(mm/de	1/1/1/	J. ro	Pink Copy - Client
	Ipied by (NAME): UKKY USTIC Signature: UMM			- Alle						Date:	10	21	5	2	(1111000		te das	a maximum of					

CA14079-NOV23 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS		LABORATORY DETAIL	s
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14079-NOV23
Project	11056	Received	11/02/2023
Order Number		Approved	11/09/2023
Samples	Ground Water (2)	Report Number	CA14079-NOV23 R1
		Date Reported	11/09/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 6 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 011390

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-19
Legend	20
Annexes	21

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER				Sample Number	7	8
				Sample Name	11056WellA3777	11056WellA3777
					96_1hr	96_6hr
1 = ODWS_AO_OG / WATER / Table 4	- Drinking Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
_2 = ODWS_MAC / WATER / Table 1,2 a	and 3 - Drinking Water - Reg O.169_03			Sample Date	02/11/2023	02/11/2023
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry						
UV Transmittance	%Т				92.4	91.8
Alkalinity	mg/L as CaCO3	2	500		225	224
Bicarbonate	mg/L as CaCO3	2			225	224
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		5	4
Conductivity	uS/cm	2			454	461
Total Suspended Solids	mg/L	2			3	3
Turbidity	NTU	0.10	5	1	6.9	2.4
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			< 0.05	< 0.05
Ammonia+Ammonium (N)	as N mg/L	0.04			0.05	< 0.04
Dissolved Organic Carbon	mg/L	1	5		1	1
Total Organic Carbon	mg/L	1			1	1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			5	Sample Number	7	8
				Sample Name	11056WellA3777	11056WellA3777
					96_1hr	96_6hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	- Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking V	Water - Reg 0.169_03			Sample Date	02/11/2023	02/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics						
Fluoride	mg/L	0.06		1.5	< 0.06	< 0.06
Bromide	mg/L	0.3			< 0.3	< 0.3
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	0.09	0.12
Sulphate	mg/L	2	500		23	21
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		260	256
Aluminum (total)	mg/L	0.001	0.1		0.012	0.003
Arsenic (total)	mg/L	0.0002		0.01	0.0002	< 0.0002
Boron (total)	mg/L	0.002		5	0.010	0.008
Barium (total)	mg/L	0.00008		1	0.0285	0.0313
Beryllium (total)	mg/L	0.000007			0.000007	< 0.000007
Bismuth (total)	mg/L	0.00001			< 0.00001	< 0.00001
Cobalt (total)	mg/L	0.000004			0.000113	0.000043
Calcium (total)	mg/L	0.01			96.2	94.7
Cadmium (total)	mg/L	0.000003		0.005	0.000003	< 0.000003
Copper (total)	mg/L	0.0002	1		0.0006	0.0007
Chromium (total)	mg/L	0.00008		0.05	0.00021	0.00015
Iron (total)	mg/L	0.007	0.3		0.804	0.371
Potassium (total)	mg/L	0.009			0.377	0.365
Magnesium (total)	mg/L	0.001			4.83	4.72

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			5	Sample Number	7	8
				Sample Name	11056WellA3777	11056WellA3777
					96_1hr	96_6hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - R	Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wat	ter - Reg 0.169_03			Sample Date	02/11/2023	02/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Manganese (total)	mg/L	0.00001	0.05		0.0199	0.0134
Molybdenum (total)	mg/L	0.00004			0.00024	0.00019
Nickel (total)	mg/L	0.0001			0.0006	0.0004
Sodium (total)	mg/L	0.01	200	20	2.37	2.24
Phosphorus (total)	mg/L	0.003			0.003	< 0.003
Lead (total)	mg/L	0.00009		0.01	< 0.00009	< 0.00009
Silicon (total)	mg/L	0.02			4.76	4.72
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			0.168	0.165
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			0.00007	< 0.00006
Titanium (total)	mg/L	0.00007			0.00049	0.00011
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	0.00013	0.00012
Uranium (total)	mg/L	0.000002		0.02	0.000176	0.000202
Vanadium (total)	mg/L	0.00001			0.00015	0.00016
Zinc (total)	mg/L	0.002	5		< 0.002	< 0.002
Cation sum	meq/L	-9999			5.36	5.25
Anion Sum	meq/L	-9999			5.16	5.09
Anion-Cation Balance	% difference	-9999			1.99	1.55
Ion Ratio	none	-9999			1.04	1.03

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			s	ample Number	7	8
				Sample Name	11056WellA3777	11056WellA3777
					96_1hr	96_6hr
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	- Reg 0.169_03			Sample Matrix	Ground Water	Ground Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking V	Water - Reg 0.169_03			Sample Date	02/11/2023	02/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Total Dissolved Solids (calculated)	mg/L	-9999			268	264
Conductivity (calculated)	uS/cm	-9999			526	517
Langeliers Index 4° C	@ 4° C	-9999			0.38	0.32
Saturation pH 4°C	pHs @ 4°C	-9999			7.61	7.62
Microbiology						
Total Coliform	cfu/100mL	0		0	0	0
E. Coli	cfu/100mL	0		0	0	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			130	36
Other (ORP)						
рН	No unit	0.05	8.5		7.99	7.94
Chloride	mg/L	1	250		6	6
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			< 0.002	< 0.002

EXCEEDANCE SUMMARY

				ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.169_03	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg 0.169 03
Parameter	Method	Units	Result	L1	L2
11056WellA377796_1hr					
Turbidity	SM 2130	NTU	6.9	5	1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	260	100	
Iron	SM 3030/EPA 200.8	mg/L	0.804	0.3	
11056WellA377796_6hr					

Turbidity	SM 2130	NTU	2.4		1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	256	100	
Iron	SM 3030/EPA 200.8	mg/L	0.371	0.3	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma						
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Recovery Limits (%)		Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High				
Alkalinity	EWL0114-NOV23	mg/L as CaCO3	2	< 2	1	20	102	80	120	NA						

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0056-NOV23	mg/L	0.04	<0.04	ND	10	97	90	110	92	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate			S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 5)	Spike Recovery	Recover	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Chloride	DIO5010-NOV23	mg/L	1	<1	ND	20	104	80	120	107	75	125
Sulphate	DIO5010-NOV23	mg/L	2	<2	13	20	102	80	120	105	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD AC (%)	Spike	Recove (%	ry Limits 6)	Spike Recovery	Recover	y Limits	
						(%)	(%)	Low	High	(%)	Low	High
Bromide	DIO0191-NOV23	mg/L	0.3	<0.3	ND	20	103	90	110	93	75	125
Nitrite (as N)	DIO0191-NOV23	mg/L	0.03	<0.03	ND	20	99	90	110	103	75	125
Nitrate (as N)	DIO0191-NOV23	mg/L	0.06	<0.06	ND	20	101	90	110	105	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD AC (%)	Spike	Recover (%	y Limits	Spike Recovery	Recover	y Limits	
						(%)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0054-NOV23	mg/L	1	<1	2	20	95	90	110	98	75	125
Total Organic Carbon	SKA0054-NOV23	mg/L	1	<1	2	20	95	90	110	98	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	RPD AC (%)	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits
							(%)	Low	High	(%)	Low	High
Carbonate	EWL0114-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0114-NOV23	mg/L as CaCO3	2	< 2	1	10	NA	90	110	NA		
ОН	EWL0114-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (۹	y Limits	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0166-NOV23	TCU	3	< 3	0	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	Recovery		6)	Recovery	(%	b)
						(10)	(%)	Low	High	(%)	Low	High
Conductivity	EWL0114-NOV23	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC Spike (%) Recovery		Recover	y Limits	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0169-NOV23	mg/L	0.06	<0.06	ND	10	100	90	110	94	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference		Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits	
						(%)	(%)	Low	High	(%)	Low	High
Mercury (total)	EHG0007-NOV23	mg/L	0.00001	< 0.00001	ND	20	93	80	120	91	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	trix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover (%	y Limits
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0035-NOV23	mg/L	0.00005	<0.00005	ND	20	98	90	110	87	70	130
Aluminum (total)	EMS0035-NOV23	mg/L	0.001	<0.001	7	20	100	90	110	112	70	130
Arsenic (total)	EMS0035-NOV23	mg/L	0.0002	<0.0002	ND	20	98	90	110	97	70	130
Barium (total)	EMS0035-NOV23	mg/L	0.00008	<0.00008	0	20	93	90	110	75	70	130
Beryllium (total)	EMS0035-NOV23	mg/L	0.000007	<0.000007	12	20	98	90	110	88	70	130
Boron (total)	EMS0035-NOV23	mg/L	0.002	<0.002	10	20	107	90	110	96	70	130
Bismuth (total)	EMS0035-NOV23	mg/L	0.00001	<0.00001	ND	20	97	90	110	83	70	130
Calcium (total)	EMS0035-NOV23	mg/L	0.01	<0.01	3	20	105	90	110	127	70	130
Cadmium (total)	EMS0035-NOV23	mg/L	0.000003	<0.000003	0	20	99	90	110	99	70	130
Cobalt (total)	EMS0035-NOV23	mg/L	0.000004	<0.000004	0	20	99	90	110	94	70	130
Chromium (total)	EMS0035-NOV23	mg/L	0.00008	<0.00008	0	20	101	90	110	105	70	130
Copper (total)	EMS0035-NOV23	mg/L	0.0002	<0.0002	2	20	98	90	110	97	70	130
Iron (total)	EMS0035-NOV23	mg/L	0.007	<0.007	0	20	102	90	110	100	70	130
Potassium (total)	EMS0035-NOV23	mg/L	0.009	<0.009	2	20	103	90	110	111	70	130
Magnesium (total)	EMS0035-NOV23	mg/L	0.001	<0.001	1	20	107	90	110	89	70	130
Manganese (total)	EMS0035-NOV23	mg/L	0.00001	<0.00001	1	20	96	90	110	78	70	130
Molybdenum (total)	EMS0035-NOV23	mg/L	0.00004	<0.00004	5	20	96	90	110	96	70	130
Sodium (total)	EMS0035-NOV23	mg/L	0.01	<0.01	1	20	105	90	110	95	70	130
Nickel (total)	EMS0035-NOV23	mg/L	0.0001	<0.0001	7	20	94	90	110	86	70	130
Lead (total)	EMS0035-NOV23	mg/L	0.00009	<0.00009	ND	20	98	90	110	88	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	ıtrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover (%	y Limits 6)
						(76)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0035-NOV23	mg/L	0.003	<0.003	ND	20	103	90	110	NV	70	130
Antimony (total)	EMS0035-NOV23	mg/L	0.0009	<0.0009	ND	20	97	90	110	97	70	130
Selenium (total)	EMS0035-NOV23	mg/L	0.00004	<0.00004	ND	20	100	90	110	92	70	130
Silicon (total)	EMS0035-NOV23	mg/L	0.02	<0.02	1	20	102	90	110	NV	70	130
Tin (total)	EMS0035-NOV23	mg/L	0.00006	<0.00006	ND	20	101	90	110	NV	70	130
Strontium (total)	EMS0035-NOV23	mg/L	0.00008	<0.00008	1	20	99	90	110	82	70	130
Titanium (total)	EMS0035-NOV23	mg/L	0.00007	<0.00005	ND	20	98	90	110	NV	70	130
Thallium (total)	EMS0035-NOV23	mg/L	0.000005	<0.000005	0	20	98	90	110	88	70	130
Uranium (total)	EMS0035-NOV23	mg/L	0.000002	2e-006	5	20	98	90	110	89	70	130
Vanadium (total)	EMS0035-NOV23	mg/L	0.00001	<0.00001	16	20	97	90	110	98	70	130
Zinc (total)	EMS0035-NOV23	mg/L	0.002	<0.002	5	20	101	90	110	97	70	130

Microbiology

Method: SM 9215A | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recovery (%	/ Limits)	Spike Recovery	Recovery (%)	^y Limits
						(%)	(%)	Low	High	(%)	Low	High
Heterotrophic Plate Count (HPC)	BAC9064-NOV23	cfu/1mL	-	ACCEPTED	ACCEPTE							
					D							
E. Coli	BAC9064-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9064-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0114-NOV23	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD AC (%)	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0052-NOV23	mg/L	0.002	<0.002	ND	10	109	80	120	96	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	PD AC Spike Recovery Limits		Spike		Spike	Recover	y Limits	
						(%)	Recovery	(%)		Recovery	(%)		
						(70)	(%)	Low	High	(%)	Low	High	
Sulphide	SKA0090-NOV23	mg/L	0.02	<0.02	ND	20	105	80	120	NA	75	125	

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recoverv	Recover	/ Limits
						(%)	Recovery (%)	Low	High	(%)	Low	, High
Total Suspended Solids	EWL0223-NOV23	mg/L	2	< 2	1	10	95	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0041-NOV23	mg/L	0.05	<0.05	ND	10	108	90	110	107	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits	
						(%)	Recoverv	(%)		Recovery	(%)		
							(%)	Low	High	(%)	Low	High	
Turbidity	EWL0102-NOV23	NTU	0.10	< 0.10	0	10	99	90	110	NA			

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	- London: 657 Cons	sortium Court.	_ondon. O	N. N6E 2S8 Phone	: 519-0	672-450	D Toll F	ree: 877	-848-80	060 Ea	w.sgs.	com/er	nvironm 61	ent								Page of
A - 0				Labo	rator	y Info	rmati	on Se	ction	- Lab	use (only	01									Page of
ceived By:		Received By	(signature)):	2							_	_	7	TC	C						
ceived Date: / (mm/dd/y	y)	Custody Seal	Present: Intact:	Yes No X			Cool	ing Ager	Upon F	ent: Y Receint	(°C)	No L	6	ype:	-	e	17			IMC #	ca	14079-
REPORT INFORMATION	IN	VOICE INFO	RMATIO	DN							(-)_				ALC: NO				LAD		6	nov
mpany: DM WILLS	(same as Re	eport Informa	tion)		Quo	tation #							ananananan				P.O. #:	110	25	6		1101
ntact: RALF BOLVIN	Company:				Proj	ect #:		10	54	,			1		land.	and an and a second s	Site Location	/ID:		Sec.		The All States
dress: 150 JAMESON DEIVE	Contact:					0							Т	URNA	ROU	ND TIM	(TAT) REQUIRE	D				
PETERBOROUGH, ON	Address:		<u> </u>	Regular TAT (5-7days) TAT's are quoted Samples receive										TAT's are quoted Samples receive	l in busine d after 6pr	ss days n or on	exclud weeken	e statutor ids: TAT t	y holidays & weekends). egins next business day			
one: 705-868-1671	1.6.1.18	- 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995			RUS	н тат	(Add	itional	Charg	es Ma	у Арр	ly):		1	Day	🗌 2 Da	ys 🗌 3 Days 🗌] 4 Days	5			
	Phone:		~ /		PLE	ASE C	ONFI	RMRUS	SH FE	ASIBIL		/ITH S	SGS R	EPRE	SENT	ATIVE	RIOR TO SUBM	ISSION				
ail: 1 DOIVINDOMWILLS.Com	Email: acc	ountsk	edm	Willscow	Spe	cify Due	Date	:						TE. DI			WITH SGS DRINKI	NG WATE	R CHA	IN OF C	USTODY	ON MUST BE SUBMITTE
REG	ULATIONS								1		A	NA	LYS	IS R	REQ	UES	ED					
gulation 153/04:	Other Regulation	ns: (3 Day min TA	D Se	ewer By-Law:		M	Ğ I	1	sv	OC	PCB	P	HC	VC	JC	Pest	Other	(please sp	ecify)		TCLP	
Table 2 Ind/Com Coarse		MMER	,	Storm	126															PKO	Specify	
Table 3 Agri/Other Medium		Other:	ML	unicipality:		S R-soll)	CrVI										Re Martine			ion o	tests	
RECORD OF SITE CONDITION (RSC)		NO			Î	EC,SA	C UN HO	b,Mo,N			Arocl					ther				'izat	M M&I	00000505
					3	Orga (HWS)	Suit	only Do,Cu,F		Sa		×				ecify o			14414	ctel	Voc	COMMENTS
	DATE	TIME	# 05		erec	g pH.(E	als	tals o	ıly	BNs, C	otal [BTE	1y		-	es e or sp			se:	Jara	Орсв	Market States
SAMPLE IDENTIFICATION	SAMPLED SAMPLED E	BOTTLI	ES MATRIX	E	als d N, CN,H	Met	Met:	S on	CS AHS, A	s	+ +	4 on	STEX	X only	icid		S. W.	Skg:	10	B(a)P		
					Field	Meta CI. Na-	Full	CP b,As,B	HAG	SVO Il incl P	CB	H-F	-1-F 0 BTE	/0C	STE	est			ew	Vate		
11056Well A377796-160	Nov 2/13	10:2000	13	GW	N			- 00	Like	00 00			LLL C	0		H 0			0.0	>0	Gilgnit.	
11056 6011 A377796 660	Nou 7.123	3:2000	13	GW	N								1.20		Ken St			Real of the		\Diamond		
11050 11011102011	10000100	0.00 mil		Gro	10										<u></u>					A		
																			1			
												19986	1							10.000		
			12 (1.148) (1.179)																1000			Martin The
		A A A A A A A A A A A A A A A A A A A																		1.26		
		and the second									Next.								1949			
		and the second second				1997									444			1				
	energia (nergenal)	de la com	Sec. 10				1					North State										
	AND AND A																	1.4				
		Wales, D				1.00																
rvations/Comments/Special Instructions				00		0	,								1049 1. 1045						N. Sales	
DIED BY (NAME): CHEIS OSTIC	合理》(85日)了。 注意:注意		Signature	: Uh	1	UA	5		iel de			aley-		1	Date:	11	02,23	5 (m	m/dd/v	y)	1000	Pink Copy - Client
nquished by (NAME): CURIS DST	10	ANTA STATISTICS	Signature	: Chi	- 1	M) t	t	114	175.31		NIC	1. 18	12 32		Datas	11	07.17	5 (m	un (dd ha		HUNTER -	

CA14296-NOV23 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	6	LABORATORY DETAIL	S
Client	D.M. Wills -Peterborough	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	705-652-2000
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	Maarit.Wolfe@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14296-NOV23
Project	11056	Received	11/08/2023
Order Number		Approved	11/15/2023
Samples	Ground Water (2)	Report Number	CA14296-NOV23 R1
		Date Reported	11/15/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 5 degrees C Cooling Agent Present: Yes

Custody Seal Present: Yes

Chain of Custody Number: 036655

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Little

TABLE OF CONTENTS

First Page	1
ndex	2
Results	. 3-6
Exceedance Summary	7
QC Summary	8-18
_egend	19
Annexes	20

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

			Sample Number	7	8
			Sample Name	11056-WellA377	11056-WellA377
				799_1hr	799_6hr
ing Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
Drinking Water - Reg O.169_03			Sample Date	08/11/2023	08/11/2023
Units	RL	L1	L2	Result	Result
%Т				96.7	97.1
mg/L as CaCO3	2	500		198	198
mg/L as CaCO3	2			198	198
mg/L as CaCO3	2			< 2	< 2
mg/L as CaCO3	2			< 2	< 2
TCU	3	5		4	3
uS/cm	2			397	409
mg/L	2			2	< 2
NTU	0.10	5	1	0.80	0.55
mg/L	0.05	0.15		< 0.05	< 0.05
as N mg/L	0.05			< 0.05	< 0.05
as N mg/L	0.04			< 0.04	< 0.04
mg/L	1	5		1	1
mg/L	1			< 1	1
i - -	ng Water - Reg O.169_03 Drinking Water - Reg O.169_03 Units 0%T %T mg/L as CaCO3 mg/L as CaCO3 mg/L as CaCO3 0mg/L as CaCO3 0mg/L as CaCO3 0mg/L as CaCO3 0mg/L as CaCO3 0mg/L wg/L 0mg/L 3mg/L as N mg/L as N mg/L as N mg/L as N mg/L	ng Water - Reg 0.169_03 Drinking Water - Reg 0.169_03 Units RL %T mg/L as CaCO3 2 mg/L as CaCO3 2 1 mg/L as CaCO3 2 2 mg/L as CaCO3 2 1 mg/L as CaCO3 2 2 mg/L as CaCO3 2 1 0 0 1 0.05 as N mg/L 0.05 as N mg/L 0.04 mg/L 1 mg/L 1	ng Water - Reg 0.169_03 Units RL L1 %T mg/L as CaCO3 2 500 mg/L as CaCO3 2 Mg/L as CaCO3 3 5 Mg/L as CaCO3 3	Sample Number gwater - Reg 0.169_03 Sample Matrix Drinking Water - Reg 0.169_03 RL L1 L2 Units RL L1 L2 %T 500 1000000000000000000000000000000000000	Sample Number 7 Sample Name 11056-WellA377 799_1hr ng Water - Reg 0.169_03 Sample Matrix Oniking Water - Reg 0.169_03 Sample Date Units RL L1 L2 %T 96.7 mg/L as CaCO3 2 500 198 mg/L as CaCO3 2 1 198 mg/L as CaCO3 2 4 Mg/L as CaCO3 2 2 Mg/L as CaCO3 2 4 Mg/L as CaCO3 2 2 Mg/L as CaCO3 2 2 Mg/L as CaCO3 2 2 Mg/L 0.10

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

		8	Sample Number	7	8
			Sample Name	11056-WellA377	11056-WellA377
				799_1hr	799_6hr
Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
king Water - Reg O.169_03			Sample Date	08/11/2023	08/11/2023
Units	RL	L1	L2	Result	Result
		1			
mg/L	0.06		1.5	< 0.06	< 0.06
mg/L	0.3			< 0.3	< 0.3
as N mg/L	0.03		1	< 0.03	< 0.03
as N mg/L	0.06		10	1.84	1.62
mg/L	2	500		7	8
mg/L	0.02			< 0.02	< 0.02
mg/L as CaCO3	0.05	100		220	225
mg/L	0.001	0.1		0.007	0.003
mg/L	0.0002		0.01	< 0.0002	< 0.0002
mg/L	0.002		5	0.015	0.015
mg/L	0.00008		1	0.00993	0.00982
mg/L	0.000007			< 0.000007	< 0.000007
mg/L	0.00001			< 0.00001	< 0.00001
mg/L	0.000004			0.000105	0.000031
mg/L	0.01			82.1	83.9
mg/L	0.000003		0.005	< 0.000003	< 0.000003
mg/L	0.0002	1		0.0009	0.0006
mg/L	0.00008		0.05	0.00073	0.00049
mg/L	0.007	0.3		0.074	0.026
mg/L	0.009			0.373	0.361
mg/L	0.001			3.61	3.82
	Vater - Reg O.169_03 Units Units Units Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L as CaCO3 Mg/L	Water - Reg 0.169_03 Units RL Imp/L 0.06 mg/L 0.03 as N mg/L 0.03 as N mg/L 0.03 as N mg/L 0.03 mg/L 0.03 mg/L 0.03 as N mg/L 0.03 mg/L 0.03 mg/L 0.03 mg/L 0.03 mg/L 0.03 mg/L 0.02 mg/L 0.001 mg/L 0.001 mg/L 0.0002 mg/L 0.0001 mg/L 0.00001 mg/L 0.00002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L	Water - Reg 0.169_03 Units RL L1 mg/L 0.06	Sample Number Sample Name Water - Reg 0.169_03 Sample Matrix Sample Date King Water - Reg 0.169_03 RL L1 L2 Mnits RL 1.5 1 mg/L 0.06 1.5 1 as N mg/L 0.03 1 1 as N mg/L 0.03 1 1 as N mg/L 0.06 1.5 10 mg/L 0.03 1 1 as N mg/L 0.03 1 1 mg/L 0.06 10 1 mg/L 0.06 100 1 mg/L 0.02 5 1 mg/L 0.001 0.1 1 mg/L 0.002 0.01 1 mg/L 0.0007 1 1 mg/L 0.00007 1 1 mg/L 0.00007 1 1 mg/L 0.00007 1 1 mg/L 0.00003 0.005 1	Sample Number 7 Sample Name 11056-WellA377 799_1hr Vater - Reg 0.169_03 Sample Matrix Mults RL Sample Date Mults RL L1 L2 Mults RL 1 <0.06

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			\$	Sample Number	7	8
				Sample Name	11056-WellA377	11056-WellA377
				O	799_1hr	799_6hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg 0.1	169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Re	eg O.169_03			Sample Date	08/11/2023	08/11/2023
Parameter	Units	RL	L1	LZ	Result	Result
Metals and Inorganics (continued)						
Manganese (total)	mg/L 0.	.00001	0.05		0.00835	0.00197
Molybdenum (total)	mg/L 0.	.00004			0.00018	0.0009
Nickel (total)	mg/L 0	0.0001			0.0005	0.0002
Sodium (total)	mg/L	0.01	200	20	1.54	1.61
Phosphorus (total)	mg/L (0.003			< 0.003	< 0.003
Lead (total)	mg/L 0.	.00009		0.01	0.00011	< 0.00009
Silicon (total)	mg/L	0.02			4.28	4.34
Silver (total)	mg/L 0.	.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L 0.	.00008			0.137	0.140
Thallium (total)	mg/L 0.0	000005			< 0.000005	< 0.000005
Tin (total)	mg/L 0.	.00006			< 0.00006	< 0.00006
Titanium (total)	mg/L 0.	.00007			0.00018	< 0.00007
Antimony (total)	mg/L 0	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L 0.	.00004		0.05	0.00015	0.00012
Uranium (total)	mg/L 0.0	000002		0.02	0.000186	0.000177
Vanadium (total)	mg/L 0.	.00001			0.00027	0.00027
Zinc (total)	mg/L (0.002	5		< 0.002	< 0.002

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			:	Sample Number	7	8
				Sample Name	11056-WellA377	11056-WellA377
					799_1hr	799_6hr
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wate	er - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	Water - Reg 0.169_03			Sample Date	08/11/2023	08/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Microbiology						
Total Coliform	cfu/100mL	0		0	6	2
E. Coli	cfu/100mL	0		0	0	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			640	115
Other (ORP)						
рН	No unit	0.05	8.5		8.15	8.09
Chloride	mg/L	1	250		2	3
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			< 0.002	< 0.002

EXCEEDANCE SUMMARY

				ODWS_AO_OG /	ODWS_MAC /
				WATER / Table 4	WATER / Table
				- Drinking Water -	1,2 and 3 -
				Reg 0.169_03	Drinking Water -
					Reg 0.169_03
Parameter	Method	Units	Result	L1	L2
11056-WellA377799_1hr					
Total Coliform	OMOE	cfu/100mL	6		0
	MICROMFDC-E3407A				
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	220	100	
11056-WellA377799_6hr					
Total Coliform	OMOE	cfu/100mL	2		0
	MICROMFDC-E3407A				
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	225	100	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits	
						(%)	(%)	Low	High	(%)	Low	High	
Alkalinity	EWL0252-NOV23	mg/L as CaCO3	2	< 2	2	20	94	80	120	NA			

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	Duplicate LCS/Sp				Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0112-NOV23	mg/L	0.04	<0.04	1	10	96	90	110	97	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank RPD AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)		
						(%)	(%)	Low	High	(%)	Low	High
Chloride	DIO5030-NOV23	mg/L	1	<1	ND	20	102	80	120	109	75	125
Sulphate	DIO5030-NOV23	mg/L	2	<2	ND	20	104	80	120	108	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove (%	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Bromide	DIO0361-NOV23	mg/L	0.3	<0.3	ND	20	97	90	110	91	75	125
Nitrite (as N)	DIO0361-NOV23	mg/L	0.03	<0.03	ND	20	99	90	110	101	75	125
Nitrate (as N)	DIO0361-NOV23	mg/L	0.06	<0.06	ND	20	102	90	110	99	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0113-NOV23	mg/L	1	<1	2	20	103	90	110	96	75	125
Total Organic Carbon	SKA0113-NOV23	mg/L	1	<1	2	20	103	90	110	96	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	RPD AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Carbonate	EWL0252-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0252-NOV23	mg/L as CaCO3	2	< 2	2	10	NA	90	110	NA		
ОН	EWL0252-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	Recovery Limits (%)		Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Colour	EWL0304-NOV23	TCU	3	< 3	0	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery	(%	6)	Recovery	(%	6)
						(70)	(%)	Low	High	(%)	Low	High
Conductivity	EWL0252-NOV23	uS/cm	2	4	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0261-NOV23	mg/L	0.06	<0.06	0	10	103	90	110	NV	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0019-NOV23	mg/L	0.00001	< 0.00001	3	20	98	80	120	98	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery	Recover	y Limits
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0100-NOV23	mg/L	0.00005	<0.00005	ND	20	106	90	110	78	70	130
Aluminum (total)	EMS0100-NOV23	mg/L	0.001	<0.001	19	20	100	90	110	83	70	130
Arsenic (total)	EMS0100-NOV23	mg/L	0.0002	<0.0002	4	20	107	90	110	103	70	130
Barium (total)	EMS0100-NOV23	mg/L	0.00008	<0.00008	2	20	102	90	110	96	70	130
Beryllium (total)	EMS0100-NOV23	mg/L	0.000007	<0.000007	ND	20	92	90	110	94	70	130
Boron (total)	EMS0100-NOV23	mg/L	0.002	<0.002	1	20	97	90	110	94	70	130
Bismuth (total)	EMS0100-NOV23	mg/L	0.00001	<0.00001	ND	20	106	90	110	86	70	130
Calcium (total)	EMS0100-NOV23	mg/L	0.01	<0.01	4	20	100	90	110	80	70	130
Cadmium (total)	EMS0100-NOV23	mg/L	0.000003	<0.000003	ND	20	108	90	110	94	70	130
Cobalt (total)	EMS0100-NOV23	mg/L	0.000004	<0.000004	10	20	100	90	110	94	70	130
Chromium (total)	EMS0100-NOV23	mg/L	0.00008	<0.00008	ND	20	104	90	110	90	70	130
Copper (total)	EMS0100-NOV23	mg/L	0.0002	<0.0002	1	20	102	90	110	94	70	130
Iron (total)	EMS0100-NOV23	mg/L	0.007	<0.007	1	20	106	90	110	75	70	130
Potassium (total)	EMS0100-NOV23	mg/L	0.009	<0.009	1	20	99	90	110	88	70	130
Magnesium (total)	EMS0100-NOV23	mg/L	0.001	<0.001	1	20	101	90	110	89	70	130
Manganese (total)	EMS0100-NOV23	mg/L	0.00001	<0.00001	2	20	99	90	110	97	70	130
Molybdenum (total)	EMS0100-NOV23	mg/L	0.00004	<0.00004	2	20	100	90	110	90	70	130
Sodium (total)	EMS0100-NOV23	mg/L	0.01	<0.01	1	20	101	90	110	91	70	130
Nickel (total)	EMS0100-NOV23	mg/L	0.0001	<0.0001	12	20	105	90	110	95	70	130
Lead (total)	EMS0100-NOV23	mg/L	0.00009	<0.00009	ND	20	105	90	110	93	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0100-NOV23	mg/L	0.003	<0.003	2	20	101	90	110	NV	70	130
Antimony (total)	EMS0100-NOV23	mg/L	0.0009	<0.0009	ND	20	103	90	110	94	70	130
Selenium (total)	EMS0100-NOV23	mg/L	0.00004	<0.00004	ND	20	102	90	110	111	70	130
Silicon (total)	EMS0100-NOV23	mg/L	0.02	<0.02	0	20	99	90	110	NV	70	130
Tin (total)	EMS0100-NOV23	mg/L	0.00006	<0.00006	ND	20	97	90	110	NV	70	130
Strontium (total)	EMS0100-NOV23	mg/L	0.00008	<0.00008	2	20	98	90	110	92	70	130
Titanium (total)	EMS0100-NOV23	mg/L	0.00007	<0.00005	3	20	96	90	110	NV	70	130
Thallium (total)	EMS0100-NOV23	mg/L	0.000005	<0.000005	ND	20	105	90	110	93	70	130
Uranium (total)	EMS0100-NOV23	mg/L	0.000002	2e-006	1	20	92	90	110	101	70	130
Vanadium (total)	EMS0100-NOV23	mg/L	0.00001	<0.00001	6	20	102	90	110	105	70	130
Zinc (total)	EMS0100-NOV23	mg/L	0.002	<0.002	ND	20	104	90	110	110	70	130

Microbiology

Method: SM 9215A | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery (%	/ Limits)	Spike Recovery	Recovery (%)	Limits
						(%)	(%)	Low	High	(%)	Low	High
Heterotrophic Plate Count (HPC)	BAC9164-NOV23	cfu/1mL	-	ACCEPTED	ACCEPTE							
					D							
E. Coli	BAC9164-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9164-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits	Spike	Recover	y Limits
						(%)	Recovery	(9	6)	Recovery	(%	.)
						(//)	(%)	Low	High	(%)	Low	High
pH	EWL0252-NOV23	No unit	0.05	NA	1		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover (%	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0107-NOV23	mg/L	0.002	<0.002	ND	10	99	80	120	NV	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	Recovery		%)	Recovery		b)
						(70)	(%)	Low	High	(%)	Low	High
Sulphide	SKA0114-NOV23	mg/L	0.02	<0.02	ND	20	116	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0346-NOV23	mg/L	2	< 2	0	10	97	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA5051-NOV23	mg/L	0.05	<0.05	3	10	100	90	110	90	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	Recoverv		6)	Recovery	(%	»)
							(%)	Low	High	(%)	Low	High
Turbidity	EWL0243-NOV23	NTU	0.10	< 0.10	0	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	- London: 657 Conso	ortium Court, L	ondon, ON, N	6E 2S8 Phon	e: 519-	672-450	00 Toll F	ree: 87	7-848-	8060 F	ax: 519)-672-0	361				NAME OF STREET			in the second			Page of
and Date		Pacaivad Bu	(cianatura):	Labo			matio	n sec	non ·	- Lap	use (only											
ceived by/ 08/23 (mm/dd/y	ry)	Custody Seal	Present: Yes		R		Coolin	g Agen	t Prese	nt: Ye	s 🕱	No [] :	Type:	IC	E						~~	111201
ceived Time: 17:05 (hr : min)		Custody Seal	Intact: Ye	s No			Tempe	erature	Upon R	leceipt	(°C) _]	5.	5	.5	-					LAB L	.IMS #:(A	14246-
REPORT INFORMATION	IN	OICE INFO	RMATION	•														110	-1				NON
mpany: UM WILLS	(same as Re	eport Informa	ition)	Salar P.	Quot	ation #		11	nrl			- Contraction		10 <u>18</u> 2011			P.O.	#:	56	1.1			
Itact: KALF BULVIN	Company:	Contraction of the second s	ant di ing		Proje	ect #:		11	054	2			TI		ROU	ND TIME	Site I	ocation/IL): 				
Tress: 150 JAMESON DIRIVE	Contact:						equiar		5-7dav	s)				UTTIV/U			TAT's an	e quoted in	busines	s days	(exclude	a statutor	y holidays & weekends).
TETEL BOLLOUGH 01	Address:				DUC		(Addit	innel	hora	o, Mo		h.).		—]4 I	2011	- 2 Dov	Samples	received a	fter 6pm	oron	weekend	is: TAT b	egins next business day
one: <u>703-060-1611</u>	Phone:	191		The state	PLE	ASE CO	ONFIR	M RUS	H FE	ASIBIL	JTY V	VITH S	GS R	REPRE	SEN				SION				
-h Luco dia ville com		- 010	a	Ir com	Spec	ify Due	a Date:		S and				*NOT	TE: DR	RINKIN	IG (POTAB	LE) WAT	ER SAMPL	ES FOR	HUM	AN CON	SUMPTIC	ON MUST BE SUBMITTE
	Email: QCL	00/175	(Camwi	15.0011	Spot		2 ator				^	MA	VS	IS P	FO	UEST	FD	DRINKING	WATER	R CHA	IN OF CI	JSTODY	
0 Reg 153/04 0 Reg 406/19	Other Regulat	tions:	Sowe	r By-I aw		M	& 1		sv	oc I	PCB	PI		VC	C	Pest	Ot	1er (please	specify)		SPLP	TCLP	
Table 1 Res/Park Soil Texture:	Other Regulations: Sewer By-Law: Reg 347/558 (3 Day min TAT) Sanitary					1	T				Sage-				1.12		18-7				Specify	Specify	
Table 2 Ind/Com Coarse	PWQO [MMER] Storm			1	τī													tests	tests	
Table 3 Agri/Other Medium/Fine		Other:	Mun	icipality:		(lio	5	3e,B,C			oclor							antes cars		R			
Soil Volume <pre> <350m3 >350m3</pre>		Reportable *Se	e note	A Cartes		CS SAR-6	Hg, Cr	As,Ba,f			Ar			Sec.	6.1					d D	Metals	Пиял	0.00005050
RECORD OF SITE CONDITION (RSC)	YES	NO			(N)	s).EC	ite I only)	/ Sb,/								/ other				zatio	Voc	Voc	COMMENTS
) pe	IOL	WS-so	only Se,Ag,T		CPs	otal	EX		2		specify	143		100	cter	Dioxane	UPCB	
	DATE	TIME	# OF	MATON	Itere	Hd BH	etals us B(H	tals Mo,Ni,S	ylni	ABNs,	F	+ 81	ying		vlu	des			se:	hara	OCP		
SAMPLE IDENTIFICATION .	SAMPLED	SAMPLED	BOTTLES	MATRIX	I E	tals VI, CN	I Me	Me Cu,Pb,	Hso	DCS PAHS,	ge	F4 +	F4 C	CS	×	tici ochlor			er U fy pkg:	lai C	DABN		
	\sim	N			Fiel	Mei	Ful	Cr.Co,	PAI	SVC all incl	PCI	ц,	F1-	V all inc	BTI	Pes		國民	Speci	Wat		ligine	
1/056 Well A377799-145	10:20AM	11/08/23	13	GW	N		205	ARCE STATE						200	1214				100	X			
11056 Well A377799-666	3:20 pm	11/08/13	13	GW	N															X			
		1.1 - 01												1				1.19			12.86		and the states
				ane A Bast att		6.150	1.37.57												1				
						1	-				si an												
							1				<u>9,9409</u> 1257						100000	1 1					
		San an di Roman an	1997 (1998) 1997 - 1998			100															1 0		
		1	1.000		1.196												10.32					1	
			A Carlot				-	1.000									- Carle			<u></u>			
	State State	States and			1000			alles !															
		Sec. St.	a Grandel	ST SHE SHE																1			
	12.45.00		王子的现象			88.51	100							1.15							1.1		
	and the second second		2.1	atten and	Maria										1.00				e s	144			King and the
ervations/Comments/Special Instructions															and a second		A Standard					1.9%	
IPled By (NAME): CHRIS OSTIC		Barrie and	Signature:	Um E	Ista		133			No. al			10343		Date:	11/	08	23	(m	m/dd/\	yy)		Pink Copy - Client
inquished by (NAME): (11016 0671	0.		Signature:	N	014	N. SAL	124		1	Charles St.	No. San			10.0	Deter	11	08	23	(m	m/dd/	() ()	1.53	Vollow & White Copy

CA14187-DEC23 R

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	3	LABORATORY DETAIL	_S
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14187-DEC23
Project	11056	Received	12/06/2023
Order Number		Approved	12/11/2023
Samples	Ground Water (3)	Report Number	CA14187-DEC23 R
		Date Reported	12/11/2023

COMMENTS

MAC - Maximum Acceptable Concentration AO/OG - Aesthetic Objective / Operational Guideline MDL - SGS Method Detection Limit

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes Chain of Custody Number: 036540

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4
Exceedance Summary	5
QC Summary	6
Legend	7
Annexes	8

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery	Recover (%	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0149-DEC23	mg/L	0.006	<0.006	NA		NA			NA		
Nitrite (as N)	DIO0149-DEC23	mg/L	0.003	<0.003	ND	20	100	90	110	80	75	125
Nitrate (as N)	DIO0149-DEC23	mg/L	0.006	<0.006	1	20	99	90	110	103	75	125

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

VII h	- London: 657 Cons	ortium Court,	London, ON, P	Labo	ratory	/ Infor	matio	n Sec	tion	- Lab	use c	only	1301					i Web					all and	
eceived By: Katelyn Mueland		Received By	(signature):	Ka	7		Caelin	a Agont	+ Droco	ati Va				Tunor	i	10								
accived Date: $1 \le 1 $	уу)	Custody Sea Custody Sea	l Present: Ye I Intact: Ye	s No s No s	1		Tempe	erature l	Upon F	leceipt	(°C)	3,	4	5		æ		- ^{ar} nge j Ange			LAB LI	MS #C	AN	187-Decz
REPORT INFORMATION	IN	VOICE INFO	RMATION																					
ompany: DM WILLS	(same as R	eport Informa	ation)		Quot	ation #:			8.5		1	N. A.L.			he -	4	F	9.0. #:	11	0	56	, 199	enter e	
Dontact: RALF BOLVIN	Company:	1. 1. 1.		124 A	Proje	ect #:		11	05	-6	4 6	1				1.3	S	ite Loca	tion/ID	3				
Idress: 150 JAMESON DEIVE	Contact:	1 1 1				,	/						TL	JRNAF	ROUN	D TIN	IE (TAT) REQU	IRED					
PETERBOROUGH, ON	Address:	11 1		S. Mary	die-	Re	egular	TAT (5	5-7day	s)							TAT San	's are quo ples rece	ived in t	er 6pm	s days i or on v	exclude ekend	s: TAT be	gins next business day
one: 705-868-1691	and the second				RUS	H TAT	Addit	ional C	Charg	es Ma	у Арр	ly):		10	ay [2 0	ays [3 Days	s []4	Days				
x:	Phone:	1		<u>1 </u>	PLE/	ASE CO	NFIR	VI RUS	SH FE	ASIBI	ITY W	VITH S	GS R	EPRE	SENT	ATIV	E PRIO	R TO SL	JBMIS	SION	ann Sr			
nail: Tholy oddmwills.com	Email: OCCO	unse	duwill	S. Con	Spec	ify Due	Date:	10	n di El	ANA CONTRACT			*NOT	re: DR	INKING	G (POT	ABLE) V	WATER S SGS DRI	AMPLE	S FOR	R HUMA	N CONS	SUMPTIC	N MUST BE SUBMITTE
REGI	JLATIONS										A	NA	LYS	IS R	EQI	JES	TED							
O.Reg 153/04 O.Reg 406/19	Other Regula	tions:	Sewe	er By-Law:		M	& I		SV	OC	PCB	Ph	IC	VO	С	Pest		Other	(please	specify)		SPLP	TCLP	AN AN
Table 1 Res/Park Soil Texture:	Reg 347/558	3 (3 Day min T	AT)	Sanitary		1.13											1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			100		Specify	Specify	
Table 2 Ind/Com Coarse			L Mun	Storm	1.5.4	W.	22	, p							15/1		and -	14.20		1	1.	tests	tests	
Table Appx.			IVIUI	icipality.		soil)	Ę	Be,B,C			roclo			ale.			£11.	100		1.63	kg			
Soil Volume <a> <a< td=""><td>ODWS Not I</td><td>Reportable *Se</td><td>e note</td><td></td><td></td><td colspan="3">Hg, CVI</td><td>A</td><td></td><td></td><td></td><td></td><td></td><td>S</td><td></td><td></td><td>18</td><td>- u</td><td>Metals</td><td></td><td>COMMENTS</td></a<>	ODWS Not I	Reportable *Se	e note			Hg, CVI			A						S			18	- u	Metals		COMMENTS		
RECORD OF SITE CONDITION (RSC)	YES	NO			XIN	gan vs),ec	lite il only)	y Sb ri,u,v,z								y othe	111	10	177	1993 I.	izati			COMMENTS
	a list to be		10 MA) pe	nor I.(B(HV	Su WS-so	onl Se,Ag,		CPs	otal	X		1021		specif	Y				Ext	Dioxane	Призр	
	DATE	TIME	# OF	a state	Itere	Hg PH	tals B(H	tals Mo,Ni,	yln	ABNS,	F	81	yln		yln	des	F	1.		se:	hara	OCP		
SAMPLEIDENTIFICATION	SAMPLED	SAMPLED	BOTTLES	MATRIX	E p	VI, CN	Me etals pl	Me Cu, Pb,	1s o	DCS PAHS,	SS	F4 -	F4 o	BTE	×	tici	5	See See	10%	y pkg:	al C	DABN		
		14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111		Field	Met (Cl, Na	Full CP me	Cr,Co,C	PAF	SVC	PCE	F1-1	F1-1	VO(BTE	Pes	-	1	1.7	Specif	Wat		- iginc	
BH101-22	DEC. 5/23	AM	2	GW	N						1999 - 1999 1997 - 1997						X			1.16				
Bilip = 2.2	1		T	105	N		1										X				1		1.2	
RU 110, 22		1		V	N		2 386			1918				- 74			X	1	1	de.				per de la competencia
DH IIO - CC	V	V	V		1.			100.0							-		~	111	-	1000		1542.1	1000	12 A 12
				S. Mar		A 19 - 41					-				-				-			<u></u>		3.7
			1.1		1000										-			1	-		1.22	<u></u>		
			1.2.2		1			-			.1							1 2	1 11	a call				
	1.1.1.1		- 14- 14-14-14	1. 1.		Con !!					Sh			1				197 - 1975. 1975 -		-				
	and provide																1919	30		Sel	1			
					1													2 - 12 - 12	1	and the				
		C. Tak																					and the second	
		har a state		. Tel	1	1.14																		
	and a second	1.1.1.1			1			1 100		1.000					14.1									
servations/Comments/Special Instructions	and and and	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1	198862		1999								1.00	1				-				
	-	1 Alexandre	1	-00.	- 6	J.A	-		1400		10		1	- 1	Carrier -	M	0	1	2				1	and a start of the second
mpled By (NAME): (HKG) ()ST(C			Signature:	1'AM	n C	VY V	v.							1.1.1	Date:	16	-10	216	-2	(r	nm/dd/y	y)		Pink Copy - Client

CA15268-SEP24 R----

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	3	LABORATORY DETAIL	S
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA15268-SEP24
Project	11056	Received	09/27/2024
Order Number		Approved	10/01/2024
Samples	Ground Water (7)	Report Number	CA15268-SEP24 R
		Date Reported	10/01/2024

COMMENTS

Temperature of Sample upon Receipt: 8 degrees C

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
ndex	3
Results	4
Exceedance Summary	5
QC Summary	6
_egend	7
Annexes	8

545								C Pro Project Mana Samp	lient: D.M. Wills -Pe oject: 11056 ager: Ralf Bolvin olers: Chris Ostic	eterborough		
MATRIX: WATER				Sample Number	5	6	7	8	9	10	11	
				Sample Name	BH110-22	BH107-22	A377799	A377796	DUP-01	BH101-22	A377795	
L1 = ODWS_MAC / WATER / Table 1,2 and 3 - [Drinking Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	
				Sample Date	27/09/2024	27/09/2024	27/09/2024	27/09/2024	27/09/2024	27/09/2024	27/09/2024	
Parameter	Units	RL	L1		Result	Result	Result	Result	Result	Result	Result	
Metals and Inorganics												
Nitrite (as N)	as N mg/L	0.03	1		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Nitrate (as N)	as N mg/L	0.06	10		4.81	0.17	1.82	0.09	0.09	8.67	1.18	
Nitrate + Nitrite (as N)	as N mg/L	0.06			4.81	0.17	1.82	0.09	0.09	8.67	1.18	

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0631-SEP24	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0631-SEP24	mg/L	0.03	<0.03	ND	20	101	90	110	104	75	125
Nitrate (as N)	DIO0631-SEP24	mg/L	0.06	<0.06	1	20	100	90	110	103	75	125

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

SGS Environment, Health & Safety	- Lakefield: 185 Cor	R ncession St., La	equest akefield, ON K	for Labo	ratory \$	Serv	ices	and 6365 W	CH/	AIN (OF (TO	YC								No:011	.39
	- London: 657 Cons	sortium Court, L	ondon, ON, N	I6E 2S8 Phone	: 519-672-450	0 Toll F	ree: 877	-848-8	060 Fax	: 519-6	72-036	61		di la		1. 19	la de la Reddinar					Page	of
CED 2 - 2021				Labo	ratory Info	rmati	ion Sec	ction	- Lab	use o	only												
ceived By:		Received By ((signature):			Cool	ina Aaen	t Prese	ent: Y	es 🗖	No 🗌	la T	voe:										1
eceived Time: 15:50 (hr : min)		Custody Seal	Intact: Ye			Tem	perature	Upon F	Receipt	(°C)	7.	81.	10						LA	3 LIMS #:	Ser	21526	68
REPORT INFORMATION	IN	VOICE INFO	RMATION													1.2							
ompany: DM WILLS	V (same as Re	eport Informa	tion)		Quotation :	#:	1									P.	0. #:	11	105	16			
ontact: RALF BOLVIN	Company:	And Mark	Star Star	all and the second	Project #:		110	,5	6		1.14			a kina		Si	e Locatio	n/ID:					
dress: 150 JAMESON DR	Contact:											τι	JRNA	ROUN	D TI	ME (TAT)	REQUIR	ED					
PETERBOROUGH, ON	Address:		<u>11 - 14</u>		F	Regula	r TAT (5	-7day	s)							TAT Sam	s are quote ples receiv	d in bus ed after	siness da 6pm or c	ys (exclu on weeke	de statutor nds: TAT b	y holidays & week egins next busine	(ends). Ess day
ione: +05-868-1691	he a star				RUSH TAT	(Add	itional (Charg	es Ma	y Appl	y):		11	Day [2	Days 🗌	3 Days] 4 D	ays				
x:	Phone:		iden.		PLEASE C	ONFI	RM RUS	SH FE	ASIBIL	ITY W	ITH S	GS RI	SS REPRESENTATIVE PRIOR TO SUBMISSION								and the second		
nail: rbolvin@dmwillscom	Email: ACCO	unts 6	Idmw:	115.com	Specify Du	e Date	o:				9	NO	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC WITH SGS DRINKING WATER CHAIN OF CUSTORY								VSUMPTIC CUSTODY	ON MUST BE SUE	3MITTED
REG	ULATIONS									A	NA	LYS	IS R	EQI	JES	STED							
gulation 153/04:	Other Regulation	ns:	Sewe	er By-Law:	IN	M&I SVOC PCB PHC			VC		Pest		Othe	r (pleas	e specify)		TCLP						
Table 1 Res/Park Soil Texture:	Reg 347/558	3 (3 Day min TA	m 🗆	Sanitary											10.11	kg	Specify						
Table 2 Ind/Com Coarse				Storm	oil)								N		100			TCLP					
Table Agri/Other Medium		ODWS	Munic	ipality:	CS SAR-s		o,Ni,			clor				Sec. 1		111				atio	tests		
RECORD OF SITE CONDITION (RSC)	YES V	NO			(N)	ite	,Pb,Mo			Aro					other	F				Briz		СОММЕ	NTS
			and a state of		d (Y	Su	only Co,Cu		CPs		X			10.00	pecify	4		140		acte			
	DATE	TIME	# OF		kere & In	tals	als of	Vir	ABNs,	Total	BT	Vir		2	ies ne or s	E			Jse:	har			
SAMPLE IDENTIFICATION	SAMPLED	SAMPLED	BOTTLES	MATRIX	I EI	Me	Met a,Be,B	S ol	CS AHs, I	S	+ +	×4 0	S BTEX	X on	chlori	-			er	Byd C			
					Tielo	-nll	CP b,As,B	HAG	SVO It incl F	CB	1-1-	-1-F 0 BTE	/00	STE	Desi Drgano	2			New	Vate eneral			
BH110-27 (bat 27/24	DWA	2	Gh			= _ 00		5 00	<u> </u>		LL C	5		<u>u o</u>	V			0)	<u>x > a</u>	Gignit.	<u></u>	
12:1107 - 77	epic i ci	PIN	Ĩ								•					C		201013	<u>- 16</u> 1656 - 165			anna Sealta Sta	
DH107-22										<u>97785</u>			Mather State					1999					
4311191	Line of the															X		1					
A377796			C.S. Martin	1.60												X				1.11		Star Alasta	
DUP-01		V														X		Ph.					
BH101-22	C. C. C. Star	PM	Salt L										and the second sec			X		H	19	1.38			
A377795		PM					1.36						1993			X		in de	ant .				
a second and a second	State of the	A. B. S. S. S.	and the second	V			1			No.			124				1		100 C. 1			a and a second	1.2
			1.5			1				1													
							10.4																100 (S. 10) 100 (S. 10)
	· · · · · · · · · · · · · · · · · · ·												112				8 85.54					Salaria dag	
													29/1					19 (v 2)	196				
on ations/Commonto/Pressi-Lin-te-ti	and applications	学校 (14)	Sec. Alle	1999 ·																		1013	
				11	70				01	2 -1	1 0	11											
Ipled By (NAME): CHRIS UST	10		Signature:	Clu	lui Oto			Date: DT/27, LY (mm/dd/yy)					Pink Copy - Clien	nt									
nquished by (NAME): CHRIS DS	TIC	e River	Signature:	Cha	í Qu	to	~						(aller	Date:	00	1.2	27,24 (mm/dd/yy) Yellow & White Co				Copy - SG		
on #: 1.2 Note: Submission of samples to SG	S is acknowledgement th	hat you have been	n provided direc	tion on sample co	llection/handling	g and tra	insportatio	n of san	nples. {2]	Submis	sion of a	samples	to SGS	is consid	dered a	authorization	for complet	on of wo	(mm/dd/yy) on of work. Signatures may appear or			is form or be retaine	ed on file i

CA14459-SEP24 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	6	LABORATORY DETAIL	S
Client	D.M. Wills -Peterborough	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	705-652-2143
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	brad.moore@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14459-SEP24
Project	11056	Received	09/11/2024
Order Number		Approved	09/18/2024
Samples	Ground Water (2)	Report Number	CA14459-SEP24 R1
		Date Reported	09/18/2024

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 10 degrees C Cooling Agent Present: yes

Custody Seal Present: no

Chain of Custody Number:039486

SIGNATORIES

TABLE OF CONTENTS

First Page	1
ndex	2
Results	6
Exceedance Summary	7
QC Summary 8-1	8
Legend 1	9
Annexes	0

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

ATRIX: WATER			:	Sample Number	7	8
				Sample Name	A395881_1 hr	A395881_6 hr
1 = ODWS_AO_OG / WATER / Table 4 - [Drinking Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and	d 3 - Drinking Water - Reg O.169_03			Sample Date	11/09/2024	11/09/2024
Parameter	Units	RL	L1	L2	Result	Result
eneral Chemistry						
UV Transmittance	%Т				91.2	91.2
Alkalinity	mg/L as CaCO3	2	500		169	170
Bicarbonate	mg/L as CaCO3	2			169	170
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		5	6
Conductivity	uS/cm	2			360	359
Total Suspended Solids	mg/L	2			4	2
Turbidity	NTU	0.10	5	1	2.0	1.4
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.17	0.19
Ammonia+Ammonium (N)	as N mg/L	0.04			0.18	0.18
Dissolved Organic Carbon	mg/L	1	5		1	1
Total Organic Carbon	mg/L	1			1	1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

			s	ample Number	7	8
				Sample Name	Δ305881 1 br	Δ305881 6 br
	na Watan Dag O 160 02			Sample Matrix	Ground Water	Ground Water
1 = ODWS_AO_OG / WATER / Table 4 - Drinkin	ng Water - Reg O.169_03			Sample Date	11/09/2024	11/09/2024
Parameter	I Inite	RI	11	12	Result	Result
	Onita				Robult	Nooun
		0.06		1.5	0.11	0.12
Fluoride	mg/L	0.00		1.5	0.11	0.12
Bromide	mg/L	0.3			< 0.3	< 0.3
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	< 0.06	< 0.06
Sulphate	mg/L	2	500		22	22
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		187	191
Aluminum (total)	mg/L	0.001	0.1		0.001	< 0.001
Arsenic (total)	mg/L	0.0002		0.01	0.0003	0.0002
Boron (total)	mg/L	0.002		5	0.011	0.009
Barium (total)	mg/L	0.00008		1	0.150	0.151
Beryllium (total)	mg/L	0.000007			< 0.000007	< 0.000007
Bismuth (total)	ma/L	0.00001			< 0.00001	< 0.00001
Cobalt (total)	ma/L	0.000004			0.000012	0.00008
Calcium (total)	ma/l	0.01			49.9	51.2
Cadmium (total)	mg/L	0.00003		0.005	< 0.000003	< 0.000003
Cannor (total)		0.001	1	0.003	< 0.000003	< 0.000003
	mg/L	0.001	1		< 0.001	< 0.001
Chromium (total)	mg/L	0.00008		0.05	0.00010	< 0.00008
Iron (total)	mg/L	0.007	0.3		0.438	0.398
Potassium (total)	mg/L	0.009			0.818	0.824
Magnesium (total)	mg/L	0.001			15.2	15.2
Manganese (total)	mg/L	0.00001	0.05		0.00981	0.00946

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

				Somalo Numbor	7	0
MATRIX: WATER					1	0
				Sample Name	A395881_1 hr	A395881_6 hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wa	ater - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
.2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinkir	ng Water - Reg O.169_03			Sample Date	11/09/2024	11/09/2024
Parameter	Units	RL	L1	L2	Result	Result
Aetals and Inorganics (continued)						
Molybdenum (total)	mg/L	0.0004			< 0.0004	< 0.0004
Nickel (total)	mg/L	0.0001			< 0.0001	< 0.0001
Sodium (total)	mg/L	0.01	200	20	3.82	3.59
Phosphorus (total)	mg/L	0.003			0.008	0.011
Lead (total)	mg/L	0.00009		0.01	0.00013	< 0.00009
Silicon (total)	mg/L	0.02			11.5	10.9
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			0.353	0.354
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			< 0.00006	< 0.00006
Titanium (total)	mg/L	0.0001			< 0.0001	< 0.0001
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	< 0.00004	< 0.00004
Uranium (total)	ma/L	0.000002		0.02	0.000012	0.000014
Vanadium (total)	ma/L	0.00001			0.00003	0.00003
Zinc (total)	mc/l	0.002	5		< 0.002	< 0.002
Cation sum	mg/L	_0000			3.07	4.03
	meq/L	-3333			0.00	4.05
	meq/L	-9999			3.80	3.89
Anion-Cation Balance	% difference	-9999			1.46	1.72
Ion Ratio	none	-9999			1.03	1.03
Total Dissolved Solids (calculated)	mg/L	-9999			194	196
Conductivity (calculated)	uS/cm	-9999			391	396

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER				Sample Number	7	8
				Sample Name	A395881_1 hr	A395881_6 hr
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg 0.169_03			Sample Matrix	Ground Water	Ground Water	
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	g Water - Reg O.169_03			Sample Date	11/09/2024	11/09/2024
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Langeliers Index 4° C	@ 4° C	-9999			-0.11	-0.25
Saturation pH 4°C	pHs @ 4°C	-9999			8.01	8.00
Microbiology						
Total Coliform	cfu/100mL	0		0	1	1
E. Coli	cfu/100mL	0		0	0	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			2	6
Other (ORP)						
рН	No unit	0.05	8.5		7.90	7.75
Chloride	mg/L	1	250		< 1	< 1
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols				'		
4AAP-Phenolics	mg/L	0.002			0.002	< 0.002

EXCEEDANCE SUMMARY

Hardness

Iron

					ODWS_AO_OG /	ODWS_MAC /
					WATER / Table 4	WATER / Table
					- Drinking Water -	1,2 and 3 -
					Reg O.169_03	Drinking Water -
						Reg O.169_03
	Parameter	Method	Units	Result	L1	L2
A39	95881_1 hr					
	Total Coliform	OMOE	cfu/100mL	1		0
		MICROMFDC-E3407A				
	Turbidity	SM 2130	NTU	2.0		1
	Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	187	100	
	Iron	SM 3030/EPA 200.8	mg/L	0.438	0.3	
A39	95881_6 hr					
	Total Coliform	OMOE	cfu/100mL	1		0
		MICROMFDC-E3407A				
	Colour	SM 2120	TCU	6	5	
	Turbidity	SM 2130	NTU	1.4		1

mg/L as CaCO3

mg/L

191

0.398

SM 3030/EPA 200.8

SM 3030/EPA 200.8

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Alkalinity	EWL0237-SEP24	mg/L as CaCO3	2	< 2	0	20	104	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0117-SEP24	mg/L	0.04	<0.04	2	10	98	90	110	101	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover (%	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Chloride	DIO8015-SEP24	mg/L	1	<1	ND	20	98	80	120	99	75	125
Sulphate	DIO8015-SEP24	mg/L	2	<2	ND	20	106	80	120	102	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Reco Recovery		overy Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High	
Bromide	DIO0243-SEP24	mg/L	0.3	<0.3	ND	20	93	90	110	76	75	125	
Nitrite (as N)	DIO0243-SEP24	mg/L	0.03	<0.03	6	20	96	90	110	93	75	125	
Nitrate (as N)	DIO0243-SEP24	mg/L	0.06	<0.06	0	20	97	90	110	NV	75	125	

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference	Blank RPD AC Spik		Spike	Recover (%	y Limits	Spike Recovery	Recover	y Limits			
						(%)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0116-SEP24	mg/L	1	<1	7	20	98	90	110	99	75	125
Total Organic Carbon	SKA0116-SEP24	mg/L	1	<1	7	20	98	90	110	99	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD AC (%)	Spike	Recover (%	y Limits	Spike Recovery	Recovery (%	/ Limits)	
						(%)	(%)	Low	High	(%)	Low	High
Carbonate	EWL0237-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0237-SEP24	mg/L as CaCO3	2	< 2	0	10	NA	90	110	NA		
ОН	EWL0237-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Colour	EWL0321-SEP24	TCU	3	< 3	2	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	(%)		Recovery		»)	
							(%)	Low	High	(%)	Low	High
Conductivity	EWL0237-SEP24	uS/cm	2	2	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	.)
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recoverv	(X)	o <i>j</i>	Recovery	(%)
							(%)	Low	High	(%)	Low	High
Fluoride	EWL0297-SEP24	mg/L	0.06	<0.06	0	10	101	90	110	99	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Mercury (total)	EHG0020-SEP24	mg/L	0.00001	< 0.00001	ND	20	115	80	120	125	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	y Limits
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0139-SEP24	mg/L	0.00005	<0.00005	ND	20	97	90	110	75	70	130
Aluminum (total)	EMS0139-SEP24	mg/L	0.001	<0.001	ND	20	91	90	110	114	70	130
Arsenic (total)	EMS0139-SEP24	mg/L	0.0002	<0.0002	ND	20	101	90	110	100	70	130
Barium (total)	EMS0139-SEP24	mg/L	0.00008	<0.00008	ND	20	101	90	110	104	70	130
Beryllium (total)	EMS0139-SEP24	mg/L	0.000007	<0.000007	ND	20	102	90	110	100	70	130
Boron (total)	EMS0139-SEP24	mg/L	0.002	<0.002	8	20	99	90	110	101	70	130
Bismuth (total)	EMS0139-SEP24	mg/L	0.00001	<0.00001	ND	20	97	90	110	70	70	130
Calcium (total)	EMS0139-SEP24	mg/L	0.01	<0.01	14	20	100	90	110	101	70	130
Cadmium (total)	EMS0139-SEP24	mg/L	0.000003	<0.000003	ND	20	98	90	110	101	70	130
Cobalt (total)	EMS0139-SEP24	mg/L	0.000004	<0.000004	ND	20	102	90	110	99	70	130
Chromium (total)	EMS0139-SEP24	mg/L	0.00008	<0.00008	ND	20	98	90	110	97	70	130
Copper (total)	EMS0139-SEP24	mg/L	0.001	<0.001	ND	20	101	90	110	99	70	130
Iron (total)	EMS0139-SEP24	mg/L	0.007	<0.007	ND	20	103	90	110	100	70	130
Potassium (total)	EMS0139-SEP24	mg/L	0.009	<0.009	6	20	100	90	110	97	70	130
Magnesium (total)	EMS0139-SEP24	mg/L	0.001	<0.001	10	20	99	90	110	96	70	130
Manganese (total)	EMS0139-SEP24	mg/L	0.00001	<0.00001	ND	20	102	90	110	103	70	130
Molybdenum (total)	EMS0139-SEP24	mg/L	0.0004	<0.0004	ND	20	101	90	110	94	70	130
Sodium (total)	EMS0139-SEP24	mg/L	0.01	<0.01	6	20	100	90	110	100	70	130
Nickel (total)	EMS0139-SEP24	mg/L	0.0001	<0.0001	ND	20	100	90	110	102	70	130
Lead (total)	EMS0139-SEP24	mg/L	0.00009	<0.00009	ND	20	100	90	110	99	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0139-SEP24	mg/L	0.003	<0.003	ND	20	98	90	110	NV	70	130
Antimony (total)	EMS0139-SEP24	mg/L	0.0009	<0.0009	ND	20	107	90	110	125	70	130
Selenium (total)	EMS0139-SEP24	mg/L	0.00004	<0.00004	ND	20	99	90	110	91	70	130
Silicon (total)	EMS0139-SEP24	mg/L	0.02	<0.02	ND	20	103	90	110	NV	70	130
Tin (total)	EMS0139-SEP24	mg/L	0.00006	<0.00006	ND	20	101	90	110	NV	70	130
Strontium (total)	EMS0139-SEP24	mg/L	0.00008	<0.00008	7	20	101	90	110	101	70	130
Titanium (total)	EMS0139-SEP24	mg/L	0.0001	<0.0001	ND	20	99	90	110	NV	70	130
Thallium (total)	EMS0139-SEP24	mg/L	0.000005	<0.000005	ND	20	97	90	110	84	70	130
Uranium (total)	EMS0139-SEP24	mg/L	0.000002	<0.000002	ND	20	99	90	110	101	70	130
Vanadium (total)	EMS0139-SEP24	mg/L	0.00001	<0.00001	ND	20	102	90	110	104	70	130
Zinc (total)	EMS0139-SEP24	mg/L	0.002	<0.002	ND	20	94	90	110	94	70	130

Microbiology

Method: SM 9215A | Internal ref.: ME-CA-IENVIMIC-LAK-AN-005

Parameter	QC batch	Units	RL	Method Duplicate	icate	LC	S/Spike Blank		Ma	atrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recovery (%	/ Limits)	Spike Recovery	Recovery (%)	Limits
						(%)	(%)	Low	High	(%)	Low	High
Heterotrophic Plate Count (HPC)	BAC9202-SEP24	cfu/1mL	-	ACCEPTED	ACCEPTE							
					D							
E. Coli	BAC9202-SEP24	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9202-SEP24	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recoverv	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0237-SEP24	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0112-SEP24	mg/L	0.002	<0.002	ND	10	104	80	120	89	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%) Recovery		(%)	Recovery	(%	b)
						(70)	(%)	Low	High	(%)	Low	High
Sulphide	SKA0108-SEP24	mg/L	0.02	<0.02	ND	20	96	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0246-SEP24	mg/L	2	< 2	0	10	92	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	latrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Spike (%)		Spike	Recover	ry Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Kjeldahl Nitrogen (N)	SKA0138-SEP24	mg/L	0.05	<0.05	ND	10	98	90	110	79	75	125	

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Spike (%		Spike	Recover	y Limits
						(%)	Recovery (%)			Recovery	(%)	
						(10)		Low	High	(%)	Low	High
Turbidity	EWL0256-SEP24	NTU	0.10	< 0.10	0	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	- London: 657 Cons	ortium Court, L	ondon, ON, N	6E 2S8 Phone	e: 519-6	672-4500) Toll F	ree: 87	7-848-8	3060 Fa	ax: 519	-672-0	361			-	- A CARLER				A CONTRACTOR		Page of
Siri Romard				&- Labo	ratory	Inform	natio	h Sec	tion -	Lab	use o	only								•			
ived By: 09/11/04 (mm/dd/	 w)	Received By (Custody Seal	signature):		1		Coolin	g Agent	Preser	nt: Ye	s F	No T	гГ	Гуре:	10	E						0-	1 / 1 2 -
sived Time: 18 : 00 (hr : min)	,,	Custody Seal	Intact: Ye	s No	Å.		Tempe	erature I	Jpon R	eceipt	(°C)]]	<u> </u>	8.	10	Ş					LAB	LIMS #:	Sef	> 14450
REPORT INFORMATION	IN	OICE INFO	RMATION																			(
Ipany: DM WILLS	(same as Re	port Informa	tion)		Quota	ation #:					44					and a second	P.O. #	t:	11	05	16		A CARLES
act: PALF BOLVIN	Company:	an in	No. A. M.	<u></u>	Proje	ct #:	- + +		11	05	56						Site L	ocation/II	D:				
ess: 150 JAMESON DR.	Contact:									TL	JRNA	ROUN	ID TIME	(TAT) RE	QUIRED								
ETERBOROUGH, ON	Address:	A. T.		and the second s		Re	gular	TAT (5	-7days	s)							Samples	received a	busine ifter 6pr	ss days n or on	weeken	e statutory ds: TAT b	egins next business d
ne: 705-868-1691	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	all and	and the second	1 5 8.40	RUSI	H TAT (Addit	ional (Charge	es Mag	y Appl	у):		11	Day	2 Da	ys []3[Days 📋	4 Days	s			
	Phone:				PLEA	SE CO	NFIR	MRUS	H FEA	SIBIL	ITY W	ITH S	GS R	EPRE	SEN	TATIVE	PRIOR TO	SUBMI	SSION				
" Chalvin adminills, com	Email: QCCC	untsla	dminil	SICOM	Spec	ify Due	Date:						*NOT	E: DR	RINKIN	G (POTA	BLE) WATI VITH SGS	er sampl Drinking	ES FO	R HUM	AN CON	SUMPTIC	N MUST BE SUBMIT
Stic Odmills Com REGI	JLATIONS	01110	0(1-10-11)	<u> </u>							A	NA	LYS	IS R	REQ	UEST	ED						
O.Reg 153/04 0.Reg 406/19	Other Regula	tions:	Sewe	r By-Law:		M	& I		SV	oc	PCB	PH	IC	VC	C	Pest	Oth	er (pleas	e specify)	SPLP	TCLP	
able 1 Res/Park Soil Texture:	Reg 347/558	(3 Day min TA	Т) [Т	Sanitary										aha	34		1. 5.14	1.1		-	Specify	Specify	
Table 2 Ind/Com Coarse	PWQO	MMER		Storm				τ̈́										10.00			tests	tests	
Fable 3 Agri/Other Medium/Fine		Other:	Mun	cipality:		ioil)	5	3e,B,C			oclor									g	1		
Soil Volume <a> >350m3	ODWS Not I	Reportable *Se	e note			CS SAR-e	Hg, Cr'	As,Ba,E			Ā			1.12	in the second se					L L	Metals	IBM G	
RECORD OF SITE CONDITION (RSC)	YES	NO	l.		N)	s),EC,	ite only)	, Sb,							1000	other	S H			zatio	Voc	Voc	COMMENT
					P	IOC (B(HW	Su VS-soi	only e,Ag,T		CPs	otal	EX				pecify				cteri	Dicxane	Прсв	
	DATE	TIME	# OF		tere	Ag pH.	tals s B(HV	als to,Ni,S	- N	ABNs, I	F	BT	۲		Ŋ	leor s			::	lara	Оср	B(a)P	
SAMPLE IDENTIFICATION	SAMPLED	SAMPLED	BOTTLES	MATRIX	Ē	als water)	Met als plu	Met u,Pb,N	S OI	CS AHS, A	s	4 +	4 ol	S BTEX	X or	chlorit			or Us			LIABN	
		10-26 10			ielo	Met: CI, Na-	En met	CP r,co,c	AH	N Incl P	CB	-1-F	-1-F	1 incl 1	3TE	est rgano	16.2	and the second	ewe	Nate		Lulignit.	
A295001 11 - S	ant 11 /24	9:71 000	14	Call	1			- 0		0,0		-	bite C	- 10				Sector 199		X			
HO DOD - INF J	1 11/61	2.71.04	111	0 W	IN I		19	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1							Northean State					5			
H315801 - 6hr J	pt 11/24	5:26 m	17	GIN	14										10.00						1.00		Constanting of the
				12 10															-	-			and the second s
								2.11						Grand and					_	_	1. 196		
				A. Antonia		1.0		1.15							1			1					and the second second
			1 Jacobs														-		1 12				
											1						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
			the area of								1				1999								
								1.45									Cold Colden				110,000		
															192				10		1000		
•		in the second	9 34 - 19 - 19			1. 12. (A)					80 89 1 1 1 1 1				inca il inc						-		an a
						1					12				1				64 (1893) 19 (1853)	1			
	Service Contract	The state	and the second	an airthe an		11984					1.4						69 (A.A.)						a sa ta sa
vations/Comments/Special Instructions				1	1	1	, ,	,															
Died By (NAME): CHPIS DST	IC	in failet a	Signature:	CA.	in	Q	at	e.							Date:	04	, 11 ,	24	(mm/dd	/уу)		Pink Copy - Client
	1		al sale of		n		1	L		1.50%	S. Mercel	ALS LESS	0.381395	11200	2.240	ma	11	111	81000	100	Sector of	10.00.000	

CA14338-SEP24 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	3		S
Client	D.M. Wills -Peterborough	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	705-652-2143
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	brad.moore@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14338-SEP24
Project	11056	Received	09/10/2024
Order Number		Approved	09/17/2024
Samples	Ground Water (2)	Report Number	CA14338-SEP24 R1
		Date Reported	09/17/2024

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 5 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 039485

raised RL for tag#8 NO2 due to SM

NH3 > TKN due to sample matrix

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-18
Legend	19
Annexes	20

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

ATRIX: WATER			:	Sample Number	7	8
				Sample Name	A395882-1hr	A395882-7hr
I = ODWS_AO_OG / WATER / Table 4 - D	Drinking Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and	d 3 - Drinking Water - Reg O.169_03			Sample Date	09/09/2024	09/09/2024
Parameter	Units	RL	L1	L2	Result	Result
eneral Chemistry						
UV Transmittance	%Т				60.7	65.2
Alkalinity	mg/L as CaCO3	2	500		324	292
Bicarbonate	mg/L as CaCO3	2			324	292
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		8	8
Conductivity	uS/cm	2			1960	2280
Total Suspended Solids	mg/L	2			26	21
Turbidity	NTU	0.10	5	1	39	16
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			1.43	2.16
Ammonia+Ammonium (N)	as N mg/L	0.04			2.41	2.62
Dissolved Organic Carbon	mg/L	1	5		4	4
Total Organic Carbon	mg/L	1			4	4

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

			c	Sample Number	7	8
			,	Comple Now-	A205992 46-	A 205000 7h-
	D 0 107			Sample Matrix	Ground Water	Ground Water
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wate	er - Reg O.169_03			Sample Maurix	09/09/2024	09/09/2024
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	g Water - Reg 0.169_03	Ы	14		Booult	Bogult
	Units	RL.		LZ	Result	Result
Fluoride	mg/L	0.06		1.5	0.37	0.35
Bromide	mg/L	0.3			6.1	7.7
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.3↑
Nitrate (as N)	as N mg/L	0.06		10	< 0.06	< 0.06
Sulphate	mg/L	2	500		< 2	< 2
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		422	513
Aluminum (total)	mg/L	0.001	0.1		0.085	0.045
Arsenic (total)	mg/L	0.0002		0.01	0.0003	0.0003
Boron (total)	mg/L	0.002		5	0.250	0.259
Barium (total)	mg/L	0.00008		1	0.573	0.752
Beryllium (total)	mg/L	0.000007			< 0.000007	< 0.000007
Bismuth (total)	ma/l	0 00001			< 0.00001	< 0.00001
Cobalt (total)	mg/L	0.000004			0.000213	0.000130
	mg/L	0.000004			0.000213	116
	ing/L	0.01			94.7	110
Cadmium (total)	mg/L	0.000003		0.005	0.000003	0.000004
Copper (total)	mg/L	0.001	1		0.003	0.001
Chromium (total)	mg/L	0.00008		0.05	0.00053	0.00047
Iron (total)	mg/L	0.007	0.3		4.31	1.77
Potassium (total)	mg/L	0.009			5.57	6.34
Magnesium (total)	mg/L	0.001			45.1	54.6
Manganese (total)	mg/L	0.00001	0.05		0.0730	0.0447

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

	O	7	0
	Sample Number	(8
	Sample Name	A395882-1hr	A395882-7hr
	Sample Matrix	Ground Water	Ground Water
	Sample Date	09/09/2024	09/09/2024
L1	L2	Result	Result
		0.0049	0.0052
		0.0006	0.0004
200	20	224	261
		0.054	0.054
)	0.01	0.00050	0.00011
		5.81	5.96
5		< 0.00005	< 0.00005
3		4.68	6.02
5		< 0.000005	< 0.000005
3		0.00015	< 0.00006
		0.0054	0.0035
	0.006	< 0.0009	< 0.0009
	0.05	0.00007	0.00005
2	0.02	0.000012	0.000007
		0.00027	0.00022
5		0.003	< 0.002
		18.80	22.17
		19.87	22.26
		-2.76	-0.20
		0.95	1.00
		1036	1192
		1933	2221
	L1	Sample Number Sample Matrix Sample Date L1 L2 1	Sample Number 7 Sample Name A395882-1hr Sample Matrix Ground Water Sample Date 09/09/2024 L1 L2 Result 4 0.0049 0.0006 200 20 224 9 0.01 0.0050 5 <

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

				Sample Number	7	8
MATRIX: WATER					1	0
				Sample Name	A395882-1hr	A395882-7hr
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	- Reg 0.169_03			Sample Matrix	Ground Water	Ground Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	Water - Reg 0.169_03			Sample Date	09/09/2024	09/09/2024
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Langeliers Index 4° C	@ 4° C	-9999			0.48	0.44
Saturation pH 4°C	pHs @ 4°C	-9999			7.52	7.49
Microbiology						
Total Coliform	cfu/100mL	0		0	1	3
E. Coli	cfu/100mL	0		0	1	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			6900	5200
Other (ORP)						
рН	No unit	0.05	8.5		8.00	7.93
Chloride	mg/L	1	250		470	580
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			0.002	0.003

EXCEEDANCE SUMMARY

Parameter	Method	Units	Result	UDWS_AO_OG / WATER / Table 4 - Drinking Water - Reg 0.169_03	WATER / Table 1,2 and 3 - Drinking Water - Reg O.169_03 L2
95882-1hr					
E.Coli	OMOE MICROMFDC-E3407A	cfu/100mL	1		0
Total Coliform	OMOE MICROMFDC-E3407A	cfu/100mL	1		0
Colour	SM 2120	TCU	8	5	
Turbidity	SM 2130	NTU	39	5	1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	422	100	
Iron	SM 3030/EPA 200.8	mg/L	4.31	0.3	
Manganese	SM 3030/EPA 200.8	mg/L	0.0730	0.05	
Sodium	SM 3030/EPA 200.8	mg/L	224	200	20
Chloride	US EPA 325.2	mg/L	470	250	

Total Coliform	OMOE	cfu/100mL	3		0
	MICROMFDC-E3407A				
Colour	SM 2120	TCU	8	5	
Turbidity	SM 2130	NTU	16	5	1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	513	100	
Iron	SM 3030/EPA 200.8	mg/L	1.77	0.3	
Sodium	SM 3030/EPA 200.8	mg/L	261	200	20
Chloride	US EPA 325.2	mg/L	580	250	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	(%) Low High		(%)	Low	High
Alkalinity	EWL0177-SEP24	mg/L as CaCO3	2	< 2	0	20	98	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	CS/Spike Blank		м	atrix Spike / Ref.	
	Reference Blank	Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery	Recover	y Limits		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0090-SEP24	mg/L	0.04	<0.04	1	10	100	90	110	95	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	bd Duplicate		LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank RPD AC Spike (%) Recovery		Spike	Recover (%	y Limits	Spike Recovery	Recover (%	y Limits	
						(%) Recover (%)		Low	High	(%)	Low	High
Chloride	DIO8007-SEP24	mg/L	1	<1	ND	20	96	80	120	100	75	125
Sulphate	DIO8007-SEP24	mg/L	2	<2	3	20	102	80	120	97	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method Blank	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover (%	y Limits 6)
					(70)	(%)	Low	High	(%)	Low	High	
Bromide	DIO0183-SEP24	mg/L	0.3	<0.3	1	20	98	90	110	NV	75	125
Nitrate (as N)	DIO0183-SEP24	mg/L	0.06	<0.06	ND	20	97	90	110	100	75	125
Bromide	DIO0187-SEP24	mg/L	0.3	<0.3	0	20	100	90	110	NV	75	125
Nitrite (as N)	DIO0187-SEP24	mg/L	0.03	<0.03	ND	20	97	90	110	78	75	125
Nitrate (as N)	DIO0187-SEP24	mg/L	0.06	<0.06	ND	20	98	90	110	99	75	125
Nitrite (as N)	DIO0197-SEP24	mg/L	0.03	<0.03	ND	20	97	90	110	99	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	AC Spike (%) Recovery		y Limits	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0088-SEP24	mg/L	1	<1	0	20	91	90	110	98	75	125
Total Organic Carbon	SKA0088-SEP24	mg/L	1	<1	0	20	91	90	110	98	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method Duplicate	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.		
	Reference			Blank	RPD AC (%)	Spike	Recover (%	y Limits	Spike Recovery	Recovery (%	/ Limits)	
						(%)	(%)	Low	High	(%)	Low	High
Carbonate	EWL0177-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0177-SEP24	mg/L as CaCO3	2	< 2	0	10	NA	90	110	NA		
ОН	EWL0177-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference	Reference Blar	Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	y Limits	
						(%)	(%)	Low	High	(%)	Low	High
Colour	EWL0321-SEP24	TCU	3	< 3	2	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
					(%) Recovery (%) Recov		Recovery	(%	6)			
						(70)	(%)	Low	High	(%)	Low	High
Conductivity	EWL0177-SEP24	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	.)
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)) Recovery (%)		(Inconvery		<u>)</u>	
							(%)	Low	High	(%)	Low	High
Fluoride	EWL0190-SEP24	mg/L	0.06	<0.06	0	10	100	90	110	96	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits 6)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Mercury (total)	EHG0015-SEP24	mg/L	0.00001	< 0.00001	ND	20	86	80	120	129	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (۹	ry Limits 6)	Spike Recovery	Recover (%	y Limits
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0090-SEP24	mg/L	0.00005	<0.00005	ND	20	101	90	110	89	70	130
Aluminum (total)	EMS0090-SEP24	mg/L	0.001	<0.001	16	20	108	90	110	102	70	130
Arsenic (total)	EMS0090-SEP24	mg/L	0.0002	<0.0002	ND	20	103	90	110	101	70	130
Barium (total)	EMS0090-SEP24	mg/L	0.00008	<0.00008	2	20	103	90	110	97	70	130
Beryllium (total)	EMS0090-SEP24	mg/L	0.000007	<0.000007	ND	20	103	90	110	97	70	130
Boron (total)	EMS0090-SEP24	mg/L	0.002	<0.002	0	20	100	90	110	90	70	130
Bismuth (total)	EMS0090-SEP24	mg/L	0.00001	<0.00001	ND	20	99	90	110	80	70	130
Calcium (total)	EMS0090-SEP24	mg/L	0.01	<0.01	5	20	101	90	110	97	70	130
Cadmium (total)	EMS0090-SEP24	mg/L	0.000003	<0.000003	ND	20	100	90	110	104	70	130
Cobalt (total)	EMS0090-SEP24	mg/L	0.000004	<0.000004	3	20	102	90	110	92	70	130
Chromium (total)	EMS0090-SEP24	mg/L	0.00008	<0.00008	3	20	103	90	110	95	70	130
Copper (total)	EMS0090-SEP24	mg/L	0.001	<0.001	ND	20	103	90	110	91	70	130
Iron (total)	EMS0090-SEP24	mg/L	0.007	<0.007	3	20	107	90	110	75	70	130
Potassium (total)	EMS0090-SEP24	mg/L	0.009	<0.009	4	20	104	90	110	98	70	130
Magnesium (total)	EMS0090-SEP24	mg/L	0.001	<0.001	5	20	105	90	110	97	70	130
Manganese (total)	EMS0090-SEP24	mg/L	0.00001	<0.00001	2	20	106	90	110	96	70	130
Molybdenum (total)	EMS0090-SEP24	mg/L	0.0004	<0.0004	3	20	103	90	110	96	70	130
Sodium (total)	EMS0090-SEP24	mg/L	0.01	<0.01	5	20	105	90	110	99	70	130
Nickel (total)	EMS0090-SEP24	mg/L	0.0001	<0.0001	ND	20	104	90	110	99	70	130
Lead (total)	EMS0090-SEP24	mg/L	0.00009	<0.00009	ND	20	102	90	110	95	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover	y Limits)
						(%)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0090-SEP24	mg/L	0.003	<0.003	ND	20	102	90	110	NV	70	130
Antimony (total)	EMS0090-SEP24	mg/L	0.0009	<0.0009	ND	20	110	90	110	128	70	130
Selenium (total)	EMS0090-SEP24	mg/L	0.00004	<0.00004	ND	20	103	90	110	108	70	130
Silicon (total)	EMS0090-SEP24	mg/L	0.02	<0.02	2	20	100	90	110	NV	70	130
Tin (total)	EMS0090-SEP24	mg/L	0.00006	<0.00006	ND	20	103	90	110	NV	70	130
Strontium (total)	EMS0090-SEP24	mg/L	0.00008	<0.00008	3	20	105	90	110	95	70	130
Titanium (total)	EMS0090-SEP24	mg/L	0.0001	<0.0001	4	20	108	90	110	NV	70	130
Thallium (total)	EMS0090-SEP24	mg/L	0.000005	<0.000005	ND	20	99	90	110	94	70	130
Uranium (total)	EMS0090-SEP24	mg/L	0.000002	<0.00002	ND	20	101	90	110	98	70	130
Vanadium (total)	EMS0090-SEP24	mg/L	0.00001	<0.00001	6	20	103	90	110	104	70	130
Zinc (total)	EMS0090-SEP24	mg/L	0.002	<0.002	ND	20	101	90	110	105	70	130

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC Spike		Recover	/ Limits)	Spike Recovery	Recover	y Limits)	
						(70)	(%)	Low	High	(%)	Low	High	
E. Coli	BAC9135-SEP24	cfu/100mL	-	ACCEPTED	ACCEPTE								
					D								
Heterotrophic Plate Count (HPC)	BAC9135-SEP24	cfu/1mL	-	ACCEPTED	ACCEPTE								
					D								
Total Coliform	BAC9135-SEP24	cfu/100mL	-	ACCEPTED	ACCEPTE								
					D								

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	atrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery	Recovery Limits		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
рН	EWL0177-SEP24	No unit	0.05	NA	0		100			NA			

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		м	latrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits		Spike Recovery	Recover	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
4AAP-Phenolics	SKA0097-SEP24	mg/L	0.002	<0.002	4	10	100	80	120	79	75	125	

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		м	atrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits	
						(%)	Recovery	(%)	Recovery	(%)		
						(%)	(%)	Low	High	(%)	Low	High	
Sulphide	SKA0093-SEP24	mg/L	0.02	<0.02	ND	20 99		80	120	NA	75	125	

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		м		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0180-SEP24	mg/L	2	< 2	0	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	vlatrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits		Spike Recovery	Recover	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Kjeldahl Nitrogen (N)	SKA0103-SEP24	mg/L	0.05	<0.05	1	10	99	90	110	94	75	125	

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Snike	Recover	y Limits	Spike	Recover	y Limits
					14.5	(1)	Beenver	(%)		Recovery	(%)	
						(%)	(%)	Low	High	(%)	Low	High
Turbidity	EWL0188-SEP24	NTU	0.10	< 0.10	0	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	neid: 165 Concessi	on St., Lakenei	d, ON KUL 2	10 Phone: 705	-652-20	JOO Fax	: 705-6	52-6365	Web: \	www.sg	is.com	/enviro	nment									Dana	-
	London: 657 Cons	ortium Court, L	ondon, ON,	N6E 2S8 Phon	e: 519-	672-450	0 Toll F	ree: 87	7-848-8	1060 Fa	use c	-672-0	361				12000			8793		Page	01
reived By: Katelyn Medland	<u> </u>	Received By (signature): _		m							1											
veived Date: 09 16 29 (mm/dd/y	у)	Custody Seal	Present: Ye	No No]		Coolin	g Agenl	t Preser	nt: Yes		No [5	Type:	U	r			1.4	DIM	SHCA	143	38-5
	IN	Custody Seal	Intact: Y			22000200	Tempe	erature	Upon R	eceipt (<u>.</u>	<u> </u>								<u>3#. Cri</u>		
DM LIVILS	There are D	voice initio	tion)		Quet	ation #					1938				1. S. O.		PO #	. 11	05	1.			
Hart BALF BOLVIN	Company:	eport informa	uon)		Proie	ation #.		110	25	6	3103		1.1.1		1428		Site Lo	cation/ID		*		Sale St.	
ress: 150 JAMESON DRIVE	Contact:	19 AN 18	e feligente		110,0					-			τι	JRNAF	ROUN	D TIME (AT) RE	QUIRED					le la comisión
ETERBOROUGH, ON	Address:					VR	egular	TAT (5	5-7days	5)							AT's are Samples r	quoted in I eceived af	ousiness d er 6pm or	ays (e on we	xclude statu ekends: TA	itory holida T begins n	ys & weekend ext business d
ne: 705-868-1691		1919 B	- Harris		RUSI	HTAT	(Addit	ional (Charge	s May	Appl	ly):		10	ay [2 Days	3D	ays 4	Days				
	Phone:		and the second		PLEA	ASE CO	ONFIR	M RUS	SH FEA	SIBIL	ITY W	/ITH S	GS R	EPRE	SENT	ATIVE PR	NOR TO	SUBMIS	SION				A HERE
halvis @dawalls.com		ountse	dowil	S. com	Spec	ify Due	Date:	1.2.3.1				100	*NOT	E: DR	INKING	G (POTABL WI	E) WATE	R SAMPLE	S FOR HI	UMAN HAIN	CONSUMP OF CUSTO	TION MUS	T BE SUBMIT
Stic @ down 113, Com REGU	LATIONS	00111-0		//			S. C.R.				A	NAI	LYS	IS R	EQI	UESTE	D						
0.Reg 153/04 0.Reg 406/19	Other Regula	tions:	Sew	er By-Law:		M	& 1		SV) CC	РСВ	PH	IC	VO	C	Pest	Oth	er (please	specify)	S	PLP TCL	P	
Table 1 Res/Park Soil Texture:	Reg 347/558	3 (3 Day min TA	(T)	Sanitary			100.20							1.0					1000 C	SI	becify Spec	ify	
able 2 Ind/Com Coarse	PWQO	MMER		Storm	120.00	1		r ^j												1	tests test	s	
able 3 Agri/Other Medium/Fine		Other:	Mur	ncipality:		(lios	5	Be,B,C			roclor				20			they we	kg	X			
Soil Volume <a> <a< td=""><td>ODWS Not I</td><td>Reportable *Se</td><td>e note</td><td></td><td></td><td>ICS SAR-</td><td>Hg, Cr</td><td>As,Ba,</td><td></td><td></td><td>A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>on B</td><td></td><td>Metals</td><td>1 00</td><td>AAAAEAIT</td></a<>	ODWS Not I	Reportable *Se	e note			ICS SAR-	Hg, Cr	As,Ba,			A								on B		Metals	1 00	AAAAEAIT
RECORD OF SITE CONDITION (RSC)	YES	NO			XN	gan vs).ec	li only)	y sb.								y othe			izati	ended			
	A REAL PROPERTY.) pe	NOL	Su Su	onl Se, Ag,		CPs	Total	X		4.2		specif		-	Icter	Ext	Dicxane	8	
	DATE	TIME	# OF	MATON	Iter	A BH	etals	tals Mo,Ni,	yInd	ABNs	1.	8	ylno	~	uly	des		Que Con	se:			N	
SAMPLE IDENTIFICATION	SAMPLED	SAMPLED	BOTTLES	MATRIX	E P	VI, CN	I Me	Me Cu,Pb,	Hs	PAHS, PAHS,	Bs	F4+	F4	CS IBTE	x	ochior	0.0		fy pkg	Lal		it.	
					Fiel	Mei (CL, NC	Ful	CC,CO,	PAI	SVC	PCI	F1-	F1-	All inc	BTI	Pes			Sew Speci	Gene		a dest	
A395882-1hr	Sont 9/24	11:13 AM	13	GW	N															X		1.6	
N395887 - The	2019/24	5-13.0M	13	GW	N		5.77	1										1.5	1	X		in the second	
R515002-4	epiger	5 1911	10												1			6.		-		333	2月1日1月
A second s	5					1.000	100				100												(Correll'
			1 6 1 1 2 1																				
				110000	-	1														+			
				5. A. A.											-					-			
	Cherner of Land	and the second		19663																			
and the start of the														1	-WA			11					a .a" . So
The second s				1.	100	19.00																1.000	A Akir
							P											1.1					
	1. 1. A.	Same South	S. 34	10 N. 10	1000																	- North	
					2.5	1911	1.1.1.1				1												
vations/Comments/Special Instructions		Jan 19	A.S. S.	0.	1		,		ALC: N		1983				10.00		1.20	1111	2052.0215				
ALDIS DOT	r		Classed	11.	f	1	-	STA	1			10.00	1020	1		n9	09	24				-	
Ned by (MAME): (JHKI) USII	5		aignature:	Un	. 0	J8 W	1		11-	-	Constant of			1	Date:	VLI	ULI	~1	(mm/	(dd/yy)		Pink C	opy - Client

http://www.sns.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA15109-SEP24 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	3	LABORATORY DETAIL	S
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA15109-SEP24
Project	11056	Received	09/11/2024
Order Number		Approved	09/17/2024
Samples	Ground Water (2)	Report Number	CA15109-SEP24 R1
		Date Reported	09/17/2024

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 6 degrees C Cooling Agent Present: yes

Custody Seal Present: yes

Chain of Custody Number: 039487

NO2 RL raised due to sample matrix

NH3 > TKN due to sample matrix

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-19
Legend	20
Annexes	21

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			5	Sample Number	7	8
				Sample Name	A395883_1hr	A395883_7hr
1 = ODWS_AO_OG / WATER / Table 4 - Dri	inking Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3	3 - Drinking Water - Reg O.169_03			Sample Date	10/09/2024	10/09/2024
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry						
UV Transmittance	%Т				44.8	58.3
Alkalinity	mg/L as CaCO3	2	500		273	295
Bicarbonate	mg/L as CaCO3	2			273	295
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		8	8
Conductivity	uS/cm	2			2190	2430
Total Suspended Solids	mg/L	2			45	13
Turbidity	NTU	0.10	5	1	65	37
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			1.62	1.47
Ammonia+Ammonium (N)	as N mg/L	0.04			3.72	3.76
Dissolved Organic Carbon	mg/L	1	5		5	5
Total Organic Carbon	mg/L	1			5	5

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

			s	ample Number	7	8
				Sample Name	A305883 1br	4305883 7br
				Sample Matrix	Ground Water	Ground Water
1 = ODWS_AO_OG / WATER / Table 4 - Drinking V	Water - Reg 0.169_03			Sample Date	10/09/2024	10/09/2024
Parameter	Linite	PI	11	12	Regult	Result
	Onita				Nooun	Rooun
		0.06		1 5	0.22	0.22
	mg/L	0.06		1.5	0.23	0.23
Bromide	mg/L	0.3			7.3	8.1
Nitrite (as N)	as N mg/L	0.03		1	< 0.3↑	< 0.3↑
Nitrate (as N)	as N mg/L	0.06		10	< 0.06	< 0.06
Sulphate	mg/L	2	500		< 2	< 2
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		595	642
Aluminum (total)	mg/L	0.001	0.1		0.167	0.059
Arsenic (total)	mg/L	0.0002		0.01	0.0024	0.0016
Boron (total)	mg/L	0.002		5	0.156	0.181
Barium (total)	mg/L	0.00008		1	0.468	0.525
Beryllium (total)	mg/L	0.000007			0.000018	< 0.000007
Bismuth (total)	mg/L	0.00001			< 0.00001	< 0.00001
Cobalt (total)	ma/L	0.000004			0.000295	0.000107
Calcium (total)	mg/L	0.01			144	156
	mg/L	0.00003		0.005	0.000016	0.00007
	ilig/L	0.000003		0.005	0.000010	0.000007
Copper (total)	mg/L	0.001	1		0.002	< 0.001
Chromium (total)	mg/L	0.00008		0.05	0.00059	0.00031
Iron (total)	mg/L	0.007	0.3		8.42	3.88
Potassium (total)	mg/L	0.009			3.83	4.22
Magnesium (total)	mg/L	0.001			57.0	61.6
Manganese (total)	mg/L	0.00001	0.05		0.185	0.132

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

					_	
IATRIX: WATER			1	Sample Number	1	8
				Sample Name	A395883_1hr	A395883_7hr
I = ODWS_AO_OG / WATER / Table 4 - Drinking W	'ater - Reg 0.169_03			Sample Matrix	Ground Water	Ground Water
e = ODWS_MAC / WATER / Table 1,2 and 3 - Drinki	ing Water - Reg O.169_03			Sample Date	10/09/2024	10/09/2024
Parameter	Units	RL	L1	L2	Result	Result
letals and Inorganics (continued)						
Molybdenum (total)	mg/L	0.0004			0.0039	0.0048
Nickel (total)	mg/L	0.0001			0.0008	0.0002
Sodium (total)	mg/L	0.01	200	20	218	242
Phosphorus (total)	mg/L	0.003			0.155	0.131
Lead (total)	mg/L	0.00009		0.01	0.00433	< 0.00009
Silicon (total)	mg/L	0.02			6.89	6.82
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			4.12	4.68
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			< 0.00006	< 0.00006
Titanium (total)	mg/L	0.0001			0.0075	0.0074
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	ma/L	0.00004		0.05	0.00005	< 0.00004
Uranium (total)	ma/l	0.000002		0.02	0.000037	0.000005
Vanadium (total)	ma/l	0.00001			0.00046	0.00020
Zinc (total)	mg/L	0.002	5		0.003	< 0.002
	mac/l	0.002	5		22.000	24.02
	meq/L	-9999			22.20	24.03
	meq/L	-9999			21.65	23.74
Anion-Cation Balance	% difference	-9999			1.44	0.59
Ion Ratio	none	-9999			1.03	1.01
Total Dissolved Solids (calculated)	mg/L	-9999			1158	1270
Conductivity (calculated)	uS/cm	-9999			2196	2389

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER				Sample Number	7	8
				Sample Name	A395883_1hr	A395883_7hr
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking V	Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drink	king Water - Reg O.169_03			Sample Date	10/09/2024	10/09/2024
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Langeliers Index 4° C	@ 4° C	-9999			0.37	0.37
Saturation pH 4°C	pHs @ 4°C	-9999			7.42	7.36
Microbiology						
Total Coliform	cfu/100mL	0		0	620	17
E. Coli	cfu/100mL	0		0	40	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			4000	125
Other (ORP)				·		
рН	No unit	0.05	8.5		7.79	7.73
Chloride	mg/L	1	250		570	630
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			0.027	0.016

EXCEEDANCE SUMMARY

				WATER / Table 4 - Drinking Water - Reg O.169_03	WATER / Table 1,2 and 3 - Drinking Water - Reg O.169_03
Parameter	Method	Units	Result	L1	L2
95883_1hr					
E.Coli	OMOE MICROMFDC-E3407A	cfu/100mL	40		0
Total Coliform	OMOE MICROMFDC-E3407A	cfu/100mL	620		0
Colour	SM 2120	TCU	8	5	
Turbidity	SM 2130	NTU	65	5	1
Aluminum	SM 3030/EPA 200.8	mg/L	0.167	0.1	
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	595	100	
Iron	SM 3030/EPA 200.8	mg/L	8.42	0.3	
Manganese	SM 3030/EPA 200.8	mg/L	0.185	0.05	
Sodium	SM 3030/EPA 200.8	mg/L	218	200	20
Chloride	US EPA 325.2	mg/L	570	250	

Total Coliform	OMOE	cfu/100mL	17		0
	MICROMFDC-E3407A				
Colour	SM 2120	TCU	8	5	
Turbidity	SM 2130	NTU	37	5	1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	642	100	
Iron	SM 3030/EPA 200.8	mg/L	3.88	0.3	
Manganese	SM 3030/EPA 200.8	mg/L	0.132	0.05	
Sodium	SM 3030/EPA 200.8	mg/L	242	200	20
Chloride	US EPA 325.2	mg/L	630	250	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Recovery Limits Spike (%) Recovery		y Limits 6)	
						(%)	(%)	Low	High	(%)	Low	High	
Alkalinity	EWL0197-SEP24	mg/L as CaCO3	2	< 2	1	20	106	80	120	NA			

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duplicate LC:		S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0106-SEP24	mg/L	0.04	<0.04	3	10	100	90	110	101	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover (%	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Chloride	DIO8008-SEP24	mg/L	1	<1	0	20	98	80	120	82	75	125
Sulphate	DIO8011-SEP24	mg/L	2	<2	ND	20	104	80	120	101	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.				
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike (%)		Spike Recovery	Recover	y Limits စ)
						(%)	(%)	Low	High	(%)	Low	High		
Bromide	DIO0204-SEP24	mg/L	0.3	<0.3	ND	20	98	90	110	84	75	125		
Nitrate (as N)	DIO0204-SEP24	mg/L	0.06	<0.06	ND	20	97	90	110	97	75	125		
Bromide	DIO0206-SEP24	mg/L	0.3	<0.3	1	20	98	90	110	NV	75	125		
Nitrate (as N)	DIO0206-SEP24	mg/L	0.06	<0.06	ND	20	97	90	110	101	75	125		
Nitrite (as N)	DIO0239-SEP24	mg/L	0.03	<0.03	ND	20	97	90	110	102	75	125		

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Duplicate LCS/Spike Blank			Matrix Spike / Ref.				
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0104-SEP24	mg/L	1	<1	1	20	91	90	110	108	75	125
Total Organic Carbon	SKA0104-SEP24	mg/L	1	<1	1	20	91	90	110	108	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Method Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Limits Spike Recovery		y Limits	
						(%)	(%)	Low	High	(%)	Low	High	
Carbonate	EWL0197-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA			
Bicarbonate	EWL0197-SEP24	mg/L as CaCO3	2	< 2	1	10	NA	90	110	NA			
OH	EWL0197-SEP24	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA			

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Colour	EWL0321-SEP24	TCU	3	< 3	2	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery	(9	b)	Recovery	(%	,)
						(70)	(%)	Low	High	(%)	Low	High
Conductivity	EWL0197-SEP24	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recoverv	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0215-SEP24	mg/L	0.06	<0.06	2	10	97	90	110	115	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Mercury (total)	EHG0017-SEP24	mg/L	0.00001	< 0.00001	ND	20	100	80	120	129	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover (%	y Limits
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0096-SEP24	mg/L	0.00005	<0.00005	ND	20	95	90	110	71	70	130
Aluminum (total)	EMS0096-SEP24	mg/L	0.001	<0.001	1	20	103	90	110	100	70	130
Arsenic (total)	EMS0096-SEP24	mg/L	0.0002	<0.0002	4	20	98	90	110	92	70	130
Barium (total)	EMS0096-SEP24	mg/L	0.00008	<0.00008	1	20	98	90	110	90	70	130
Beryllium (total)	EMS0096-SEP24	mg/L	0.000007	<0.000007	ND	20	103	90	110	97	70	130
Boron (total)	EMS0096-SEP24	mg/L	0.002	<0.002	4	20	103	90	110	97	70	130
Bismuth (total)	EMS0096-SEP24	mg/L	0.00001	<0.00001	ND	20	96	90	110	76	70	130
Calcium (total)	EMS0096-SEP24	mg/L	0.01	<0.01	1	20	105	90	110	102	70	130
Cadmium (total)	EMS0096-SEP24	mg/L	0.000003	<0.000003	0	20	101	90	110	102	70	130
Cobalt (total)	EMS0096-SEP24	mg/L	0.000004	<0.000004	ND	20	98	90	110	90	70	130
Chromium (total)	EMS0096-SEP24	mg/L	0.00008	<0.00008	ND	20	102	90	110	97	70	130
Copper (total)	EMS0096-SEP24	mg/L	0.001	<0.001	1	20	101	90	110	97	70	130
Iron (total)	EMS0096-SEP24	mg/L	0.007	<0.007	ND	20	108	90	110	100	70	130
Potassium (total)	EMS0096-SEP24	mg/L	0.009	<0.009	0	20	102	90	110	93	70	130
Magnesium (total)	EMS0096-SEP24	mg/L	0.001	<0.001	0	20	106	90	110	100	70	130
Manganese (total)	EMS0096-SEP24	mg/L	0.00001	<0.00001	1	20	100	90	110	92	70	130
Sodium (total)	EMS0096-SEP24	mg/L	0.01	<0.01	0	20	107	90	110	99	70	130
Nickel (total)	EMS0096-SEP24	mg/L	0.0001	<0.0001	3	20	100	90	110	84	70	130
Lead (total)	EMS0096-SEP24	mg/L	0.00009	<0.00009	ND	20	104	90	110	92	70	130
Phosphorus (total)	EMS0096-SEP24	mg/L	0.003	<0.003	ND	20	106	90	110	NV	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	ıtrix Spike / Ref	t •
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits)	Spike Recovery	Recover (%	ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Antimony (total)	EMS0096-SEP24	mg/L	0.0009	<0.0009	ND	20	103	90	110	97	70	130
Selenium (total)	EMS0096-SEP24	mg/L	0.00004	<0.00004	5	20	101	90	110	87	70	130
Silicon (total)	EMS0096-SEP24	mg/L	0.02	<0.02	0	20	106	90	110	NV	70	130
Tin (total)	EMS0096-SEP24	mg/L	0.00006	<0.00006	ND	20	108	90	110	NV	70	130
Strontium (total)	EMS0096-SEP24	mg/L	0.00008	<0.00008	2	20	100	90	110	94	70	130
Titanium (total)	EMS0096-SEP24	mg/L	0.0001	<0.0001	ND	20	106	90	110	NV	70	130
Thallium (total)	EMS0096-SEP24	mg/L	0.000005	<0.000005	ND	20	96	90	110	90	70	130
Uranium (total)	EMS0096-SEP24	mg/L	0.000002	<0.000002	3	20	97	90	110	89	70	130
Vanadium (total)	EMS0096-SEP24	mg/L	0.00001	<0.00001	6	20	101	90	110	91	70	130
Zinc (total)	EMS0096-SEP24	mg/L	0.002	<0.002	5	20	100	90	110	90	70	130
Molybdenum (total)	EMS0134-SEP24	mg/L	0.0004	<0.0004	1	20	105	90	110	76	70	130

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dupl	cate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recover	y Limits)	Spike Recovery	Recover	y Limits .)
						(70)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9170-SEP24	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Heterotrophic Plate Count (HPC)	BAC9170-SEP24	cfu/1mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9170-SEP24	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike Recovery		ry Limits	Spike	Recover	y Limits
						(%)	Recovery	(%	6)	Recovery	(%)
						(70)	(%)	Low	High	(%)	Low	High
рН	EWL0197-SEP24	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	:
	Reference			Blank	RPD	RPD AC (%)	Spike	Recover (%	y Limits	Spike Recovery	Recover	ry Limits 6)
							(%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0112-SEP24	mg/L	0.002	<0.002	ND	10	104	80	120	89	75	125
4AAP-Phenolics	SKA0124-SEP24	mg/L	0.002	<0.002	ND	10	106	80	120	100	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike Recovery	Recover	y Limits	Spike	Recover	y Limits
		(%	(%)	Recovery	(%	b)	Recovery	(%)			
						(70)	(%)	Low	High	(%)	Low	High
Sulphide	SKA0108-SEP24	mg/L	0.02	<0.02	ND	20	96	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC Spike Recovery Limits (%)		Recove	ery Limits	Spike	Recovery	/ Limits
								(%)	(%))		
							(%)	Low	High		Low	High
Total Suspended Solids	EWL0210-SEP24	mg/L	2	< 2	2	10	93	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0103-SEP24	mg/L	0.05	<0.05	1	10	99	90	110	94	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	RPD AC		Recovery Limi		Spike	Recovery Limits	
						(%)	Recovery	<u>(</u>	<i>(</i> 0)	Recovery	(%	o)
							(%)	Low	High	(%)	Low	High
Turbidity	EWL0217-SEP24	NTU	0.10	< 0.10	ND	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

ceived By: Siri Ramard	 y)	Received By (s Custody Seal P	ignature):		ratory In X		Cooling	Agent	rion - I	ab u Yes		nly] 1	ype:	10	LF_						201	0 15109
ceived Time: 18:35 (hr : min)	100	Custody Seal In	ntact: Ye	s No	×		Temper	ature U	pon Re	ceipt (°C)	5	6.							LABL	.IMS #: _	gen	
REPORT INFORMATION		VOICE INFOR	MATION														RO	<i>#</i> .	110	>5	6		and the second
PALE POLITICS	(same as Re	eport Informati	ion)		Rroie	ation #:	11	05	6			1			1.5		Site	Location/	/ID:	- 0	0		
Intact KALF BULVIIV	Contact:				Tioje						-		τι	IRNA	ROUN	ID TIM	E (TAT) F	EQUIRE	D				
PG-GAB-ZOUGH DN	Address:			A. Star		Re	egular T	AT (5-	7days)								TAT's a Sample	re quoted i s received	n busine after 6pr	ss days	(exclude weekend	e statutor is: TAT b	/ holidays & weekends) egins next business day
TETER 10 100011/091	Address	3 Marson		And States	RUSI	TAT	Additio	onal C	harges	May	Apply	y):		10	Day	2 Da	ays 3	Days [4 Days	5			The entities
Y.	Phone:					SE CO	NFIRM	RUS	H FEA	SIBIL	TYW	ITH S	GS R	EPRE	SENT	TATIVE	PRIOR	TO SUBM	ISSION	PAGE 1	1		
Die Odweills		natse	dowill	s.com	Spec	ify Due	Date:_			A.	a de		*NOT	E: DR	INKIN	G (POT	ABLE) WA	TER SAMP	PLES FO	R HUM	AN CON	SUMPTIC	IN MUST BE SUBMITT
Cochi COde ulls con REGL	JLATIONS	01130	Shadaria								A	NAL	YS	IS R	EQ	UES	TED						
0.Reg 153/04 0.Reg 406/19	Other Regula	tions:	Sewe	er By-Law:		M	& I		SVC	CI	РСВ	PH	IC	VO	C	Pest	0	ther (plea	se specify)	SPLP	TCLP	
Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium/Fine Table Appx. Soil Volume <350m3	Reg 347/558	(3 Day min TA MMER Other: Reportable *See	T) C Mun 	Sanitary Storm icipality:	(N)	anics I.EC.SAR-soil)	e niy) Hg. CrVI	Sb,As,Ba,Be,B,Cd, I,V,Zn			Aroclor					other				ation Pro	Specify tests	Specify tests	COMMENTS
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered (Metals & Inorg incl CrVI, CNHg pH,(B(HW (Cl, Na-water)	Full Metals Su ICP metals plus B(HWS-so	ICP Metals only Cr,Co,Cu,Pb,Mo,NI,Se,Ag,T	PAHs only	SVOCS all incl PAHs, ABNs, CPs	PCBs Total	F1-F4 + BTEX	F1-F4 only no BTEX	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or specifi			Sewer Use:	Water Character General Ext		Be(o)P ABN Ignit	
A395883_1hr 5	Sept 10/24	10:22AM	14	GW	N,								1999	5						X			
A395883-7hr	Sept 10/24	4:22An	14	GW																			
						1.1		13.1						in the	R.A.		1000 - 20 1000 - 20						
						1.4		i ser													1910		
				1				Real		100			 (C. (A) ()	100	1							-	
and the second												1		100	1				12 12		100		
	The second second		1.6. 2				1								12.5					100	1. 199		
			N. Walk					A Com				and									1	1	
2		and the			100				100				2	1								1. Starting	
servations/Comments/Special Instructions																		0.					
mpled By (NAME): CHPIS DSTIC			Signature:	Chis	Do	te	1	15		1.3	2.50				Date:	09	,10	, 24	1	(mm/dd/	yy)		Pink Copy - Client
quished by (NAME): CHP IS OSTIC Signature: C					10	47	1989	1 185	12.72	PARK			1.11	1992	Data:	09	,10	,24		(mm/dd/	(111)		Yellow & White Conv -

Appendix D

MECP Well ID A395881, A395882 and A395883 Well Records

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: <u>WellRecordSubmission@ontario.ca</u>

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone. Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record – Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: <u>https://helpx.adobe.com/acrobat/using/digital-ids.html</u>

Notice of Collection of Personal Information

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Fields marked with an asterisk (*) are mandatory.

								Well Tag N	Number *				
								A 395881					
Туре *													
Constructio	n	A	bandonm	ent									
Measurement	recor	rded in	*										
Metric		🖌 In	nperial										
1. Well Own	er's	Inforr	nation										
Last Name and	First	Name,	or Orgar	nization is n	nandatory. *								
Last Name						First Na	ame						
Organization Hillstreet Dev	anization street Develpments Ltd.						Email Address						
Current Addre	ss												
Unit Number	:	Street I <mark>524</mark>	Number *	Street Roseb	Name * ank Rd.								
Country Canada					Province Ontario			Postal Code	Telephone Number				
2. Well Loca	ation				·				·				
Address of We	ell Lo	cation											
Unit Number	Stre 586	et Num <mark>8</mark>	ber *	Street Nam Country R	ne * d. 65			Township Hope					
Lot 27				Concessior <mark>5</mark>	١		County/Dist	rict/Municipality //BERLAND					
City/Town Osaca	Town Ica						Province Ontario		Postal Code				
UTM Coordinat	dinates Zone * Easting * Northing *				orthing *		·	Municipal Plan ar	an and Sublot Number				
NAD 83		17	705633	4	875621	Test	UTM in Map						
Other	I	I						•					

3. Overburden a	nd Bedrock Material *				
Well Depth *	78	(ft)			
General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To

			(ft)	(ft)
Topsoil	Sand	Soft		2
Sand		Soft	2	10
Clay	Sand	Soft	10	18
Medium Sand		Loose	18	37
Gravel	Sand	Dense	37	44
Clay		Packed	44	58
Clay	Sand	Packed	58	73
Coarse Gravel	Sand	Loose	73	78
	Topsoil Topsoil Sand Clay Medium Sand Gravel Clay Clay Clay Clay Clay Clay Clay Cla	TopsoilSandSandSandClaySandMedium SandSandGravelSandClaySandClaySandClaySandClaySandClaySandClaySandCoarse GravelSand	TopsoilSandSoftSandSandSoftSandSandSoftClaySandSoftMedium SandLooseGravelSandDenseClaySandPackedClaySandPackedClaySandLoose	TopsoilSandSoftSandSoft2SandSoft2ClaySandSoftMedium SandLoose18GravelSandDenseGravelSandDenseClaySandPackedClaySandPacked

4. Annular Sp	ace *		
Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed
(ft)	(ft)		(cubic feet)
0	20	Bentonite Chips - 100 lbs	1.4
		Bentonite Slurry - 50 gal	6.68

5. Method of Construction *			
Cable Tool Rotary (Con	iventional) 🗌 Rotary (Reverse	e) Boring Air percussion	Diamond
Jetting Driving] Digging 🔄 Rotary (Air)	Augering Direct Push	
✓ Other (specify) DR-12W			
6. Well Use *			
Public Indust	rial 🗌 Cooling & Air	Conditioning	
✓ Domestic Comm	nercial 🔄 Not Used		
Livestock Munic	ipal 🛛 Monitoring		
Irrigation Test H	lole Dewatering		
Other (specify)			
7. Status of Well *			
✓ Water Supply	Replacement Well	Test Hole	
Recharge Well	Dewatering Well	Observation and/or Monitoring Hole	e
Alteration (Construction)	Abandoned, Insufficient Supply	Abandoned, Poor Water Quality	
Abandoned, other (specify)			
Other (specify)			

8. Construction Record - Casing * (use negative number(s) to indicate depth above ground surface)												
Inside Diameter	Open Hole or Material (Galvanized, Fibreglass, Concrete, Plastic, Steel)	Wall Thickness	Depth From	Depth To								
(in)			(ft)	(ft)								
6.25	Steel	0.188	-2	74								
5.25	Steel	0.188	71	74								

9. Construction Rec	ord - Screen			
Outside	Material	Slot		
Diameter	(Plastic, Galvanized, Steel)	Number	Depth From	Depth To
(in)			(ft)	(ft)
5.5	Stainless Steel	35	74	78

10. Water Details				
Water found at Depth 78	(ft) Gas	Kind of water 🗌 Fresh	✓ Untested	Other

11. Hole Diameter											
Depth From	Depth To	Diameter									
(ft)	(ft)	(in)									
0	20	11.5									
20	78	7.5									

12. Results o	f Well Y	ield Te	sting											
Pumping Dis	scontinue	ed												
Explain														
If flowing give ra	ate													
Flowing					(GPM)								
Draw down														
Time (min)	Static Level	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)	33.8	34.3	34.4	34.4	34.4	34.4	34.4	34.5	34.6	34.6	34.6	34.6	34.6	34.6
Recovery														-
Time (mir	ר)	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Lev (ft)	/el	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8
After test of well yield, water was														
Clear and sand free Other (specify)														
Pump intake se	t at Pun	nping ra	te	Duratio	n of pur	nping		Final w	ater leve	el end of	pumping	g Dis	sinfected	? *

min 34.6

76

(ft) 12

(GPM) 1

hrs + 00

🖌 Yes 🗌 No

(ft)

Recommended pump depth	Recommended pump rate	Well production						
68 (ft)) 20 (GPM) 30	(GPM)					
13. Map of Well Location *								
Map 1. Please Click the map area	Map 1. Please Click the map area below to import an image file to use as the map.							
		57 Mastwood Rd	Mastwood Rd					
Mart Part	Google	0	*					

14. Informatio	on							
Well owner's information package delivered ✓ Yes □ No			ered	Date Package Delivered (y 2024/07/26	yyy/mm/dd	l) Da 20	ate Work Com 024/08/08	npleted (yyyy/mm/dd) *
Comments Sand was loos	Comments Sand was loose with pressure							
K-packer and	leader pipe abo	ove scr	een					
15. Well Cont	ractor and We	ell Tech	nnician	Information				
Business Name Herb Lang We	of Well Contracell Drilling Ltd.	tor *			Well 7560	Conti)	ractor's Licens	se Number *
Business Add	ress							
Unit Number	Street Number 4852	Str Hig	eet Name ghway 7	e *				
City/Town/Villag	ge *				Province ON			Postal Code * K0L 2W0
Business Telep 705-799-7088	hone Number	Busine hlwello	ss Email drilling@	Address gmail.com				
Last Name of W Guthrie	/ell Technician *			First Name of Well Technician * Ken			Well Technician's License Number * 4198	
16. Declaratio	on *							
I hereby con and accurate	ifirm that I am the	e persoi	n who co	nstructed the well and I here	eby confirm	n that	the information	on on the form is correct
Last Name First Na Guthrie Ken		ame Email A hlwelld		ail Address /elldrilling@gmail.com				
Signature			•		Date	Subr	mitted (yyyy/m	m/dd)
Ken Guthrie			v signed by Ken Guthrie 024.08.13 13:50:19 -04'00'		2024/08/13		08/13	

17. Ministry Use Only	
Audit Number	
A5H9 IELR	

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: <u>WellRecordSubmission@ontario.ca</u>

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone. Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record – Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: <u>https://helpx.adobe.com/acrobat/using/digital-ids.html</u>

Notice of Collection of Personal Information

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Fields marked with an asterisk (*) are mandatory.

								Well Tag Nu	umber *	
								A 395882		
Туре *										
Constructio	on	A	bandonm	ent						
Measuremen	t reco	rded in	:*							
Metric		🖌 Ir	nperial							
1. Well Ow	1. Well Owner's Information									
Last Name an	d Firs	t Name,	or Organ	nization is i	mandatory. *					
Last Name						First Na	ame			
Organization Hillstreet Dev	velop	ment L	td.			Email Address				
Current Addr	ess					•				
Unit Number		Street I <mark>524</mark>	Number *	Street Rosel	Name * pank Rd.			City/Town/Village Pickering		
Country Canada				L.	Province Ontario			Postal Code	Telephone Number	
2. Well Loc	atior	า								
Address of W	ell Lo	ocation								
Unit Number	Stre 586	eet Num <mark>58</mark>	iber *	Street Nar <mark>County R</mark>	ne * d. 65			Township <mark>Hope</mark>		
Lot Concession 247 5			n	County/District/Municipality NORTHUMBERLAND						
City/Town Osaca				Province Postal Co Ontario		Postal Code				
UTM Coordina	ates [Zone *	Easting *	N	orthing *			Municipal Plan and	I Sublot Number	
NAD 83		17	705522	. 4	1875585	Test	UTM in Map			
Other										

3. Overburden and Bedrock Material *						
Well Depth *	159	(ft)				
General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To	

			(ft)	(ft)
Topsoil	Sand	Soft		2
Medium Sand		Soft	2	7
Sand	Clay	Soft	7	14
Medium Sand	Gravel	Loose	14	40
Clay	Gravel	Packed	40	85
Fine Gravel	Sand	Loose	85	88
Clay	Gravel	Cemented	88	142
Shale	Gravel	Layered	142	143
Limestone		Hard	143	159
	Topsoil Medium Sand Sand Medium Sand Clay Fine Gravel Clay Shale Limestone	TopsoilSandMedium SandClaySandClayMedium SandGravelClayGravelClayGravelShaleGravelLimestone	TopsoilSandSoftMedium SandClaySoftSandClaySoftMedium SandGravelLooseClayGravelPackedFine GravelSandLooseClayGravelLooseShaleGravelLayeredLimestoneHard	TopsoilSand(ft)TopsoilSandSoftMedium SandClaySoft2SandClaySoft7Medium SandGravelLoose14ClayGravelPacked40Fine GravelSandLoose85ClayGravelCemented88ShaleGravelLayered142LimestoneIHard143

4. Annular Space *							
Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed				
(ft)	(ft)		(cubic feet)				
0	20	Bentonite Chips - 150 lbs	2.1				
		Bentonite Slurry - 50 gals	6.68				

5. Method of Constru	5. Method of Construction *						
	otary (Conventional)	Rotary (Reverse) Boring Air percussion	Diamond			
Jetting Di	Jetting Driving Digging Rotary (Air) Augering Direct Push						
✓ Other (specify) DR-12W							
6. Well Use *							
Public	Industrial	Cooling & Air C	Conditioning				
✓ Domestic	Commercial	Not Used					
Livestock	Municipal	Monitoring					
Irrigation	Test Hole	Dewatering					
Other (specify)							
7. Status of Well *							
Vater Supply	Replaceme	nt Well	Test Hole				
Recharge Well	Dewatering	Well	Observation and/or Monitoring Hole				
Alteration (Construction) 🗌 Abandoned, Insufficient Supply 📄 Abandoned, Poor Water Quality							
Abandoned, other (specify)							
Other (specify)							

8. Construction Record - Casing * (use negative number(s) to indicate depth above ground surface)						
Inside Diameter	Open Hole or Material (Galvanized, Fibreglass, Concrete, Plastic, Steel)	Wall Thickness	Depth From	Depth To		
(in)			(ft)	(ft)		
6.25	Steel	0.188	-2	143		
6	Open Hole		143	159		

9. Construction Record - Screen						
Outside	Material	Slot				
Diameter	(Plastic, Galvanized, Steel)	Number	Depth From	Depth To		
(in)			(ft)	(ft)		

10. Water Details				
Water found at Depth 143	(ft) 🗌 Gas	Kind of water 🗌 Fresh	Untested	Other
Water found at Depth 156	🗌 Gas	Kind of water 🗌 Fresh	Untested	Other

11. Hole Diameter					
Depth From	Depth To	Diameter			
(ft)	(ft)	(in)			
0	20	11.5			
20	143	7.5			
143	159	6			

12. Results of Well Yield Testing														
Pumping Dis	scontinu	ed												
Explain														
If flowing give ra	ate													
Flowing (GPM)														
Draw down														
Time (min)	Static Level	[;] 1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)	37.5	43.1	45.8	48.2	50.3	52.3	61.3	69.2	75.7	80.4	85.5	93.1	99	103.6
Recovery														
Time (min)		1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)		102.6	97.9	95.5	93.5	91.4	81.8	75.6	65.2	60.4	55.6	48.3	43.2	40.1
After test of we		votor wo												·

After test of well yield, water was

Pump intake set at Pumping r	ate C	Duration of pumping	1	Final water level e	nd of pumping	Disinfected? *			
158 (ft) 4	(GPM) 1	10 hrs +	min	108.4	(ft)	🖌 Yes 🗌 No			
Recommended pump depth	Recomm	nended pump rate	Well produc	tion					
150 (ft)	3	(GPM)	3	(GPM)					
13. Map of Well Location *									
Map 1. Please Click the map area	below to im	port an image file to u	ise as the ma	p. 🗌 Make	map area bigger				
	Gogla								

14. Information								
Well owner's information package delivered ✓ Yes □ No	Date Package Delivered (yyyy/mm/dd) 2023/10/23	Date Work Completed (yyyy/mm/dd) * 2024/08/06						
Comments								

15. Well Contractor and Well Technician Information										
Business Name of Well Contractor * Herb Lang Well Drilling Ltd.							Well Contractor's License Number * 7560			
Business Add	ress									
Unit Number	Street Number 4852	e *								
City/Town/Villag Omemee	ge *			Prov ON	^{>} rovince ON		Postal Code * K0L 2W0			
Business Telephone Number 705-799-7088Business Email hlwelldrilling@				Address gmail.com						
Last Name of Well Technician * Guthire			First Name of Well Technicia Ken				Vell Technician's License Number * 4198			
16. Declaratio	on *									
✓ I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate.										
Last Name Guthrie			First Name <mark>Ken</mark>			Email Address hlwelldrilling@gmail.com				

17. Ministry Use Only

Audit Number 22CI ZWJK

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: <u>WellRecordSubmission@ontario.ca</u>

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone. Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.
- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record – Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: <u>https://helpx.adobe.com/acrobat/using/digital-ids.html</u>

Notice of Collection of Personal Information

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Fields marked with an asterisk (*) are mandatory.

								Well Tag Nu	umber *
								A 395883	
Type *									
Constructio	n	A	bandonm	ent					
Measurement	reco	rded in	*						
Metric		🖌 In	nperial						
1. Well Owr	ner's	Inform	nation						
Last Name and	d First	Name,	or Orgar	nization is r	nandatory. *				
Last Name						First Na	ame		
Organization Hillstreet Development Ltd.					Email A	Address			
Current Addr	ess					•			
Unit Number		Street I <mark>524</mark>	Number *	Street Roset	Name * oank Rd	City/Town/Village Pickering			
Country Canada	ŀ				Province Ontario			Postal Code	Telephone Number
2. Well Loc	ation								
Address of W	ell Lo	cation							
Unit Number	ber Street Number * Street Name * 5868 County Rd. 65				ne * d. 65			Township Hope	
Lot Concession 27 5				n	County/District/Municipality				
City/Town Osaca						Province Ontario		Postal Code	
UTM Coordina	tes [Z	Zone * .	Easting *	N	orthing *			Municipal Plan and	I Sublot Number
NAD 83		17	705553	6 4	875651	Test	UTM in Map		
Other	I	I						•	

3. Overburden and Bedrock Material *								
Well Depth *	159	(ft)						
General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To			

				(ft)	(ft)
Brown	Topsoil	Sand	Soft		2
Brown	Medium Sand		Soft	2	7
Brown	Sand		Packed	7	17
Brown	Sand	Gravel	Loose	17	40
Grey	Clay	Sand	Packed	40	72
Grey	Gravel	Sand	Packed	72	90
Grey	Clay	Gravel	Dense	90	141
Grey	Shale	Gravel	Layered	141	142
Grey	Limestone		Hard	142	159

4. Annular Sp	ace *		
Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed
(ft)	(ft)		(cubic feet)
0	20	Bentonite Chips - 100 lbs	1.4
		Bentonite Slurry - 60 gals	8

5. Method of Constru	ction *					
	otary (Conventional)	Rotary (Reverse)) 🗌 Boring 🔄 Air percussion 📄 Diamond			
Jetting Dri	iving 🗌 Digging	Rotary (Air)	Augering Direct Push			
✓ Other (specify) DR-	12W					
6. Well Use *						
Public [Industrial	Cooling & Air C	Conditioning			
✓ Domestic [Commercial	Not Used				
Livestock [Municipal	Monitoring				
Irrigation [Test Hole	Dewatering				
Other (specify)						
7. Status of Well *						
✓ Water Supply	Replaceme	nt Well	Test Hole			
Recharge Well	Dewatering	Well	Observation and/or Monitoring Hole			
Alteration (Construction)						
Abandoned, other (sp	Abandoned, other (specify)					
Other (specify)						

8. Construction Record - Casing * (use negative number(s) to indicate depth above ground surface)								
Inside Diameter	Open Hole or Material (Galvanized, Fibreglass, Concrete, Plastic, Steel)	Depth From	Depth To					
(in)			(ft)	(ft)				
6.25	Steel	0.188	-2	141				
5.25	Steel	0.188	135	138				
5.25	Steel	0.188	142	148				

9. Construction Record - Screen								
Outside	Material	Slot						
Diameter	(Plastic, Galvanized, Steel)	Number	Depth From	Depth To				
(in)			(ft)	(ft)				
5.25	Stainless Steel	18	138	142				

10. Water Details				
Water found at Depth 142	(ft) 🗌 Gas	Kind of water 🗌 Fresh	✓ Untested	

11. Hole Diameter						
Depth From	Depth To	Diameter				
(ft)	(ft)	(in)				
0	20	11.56				
20	142	7.5				
142	159	6				

12. Results o	f Well \	ield Te	esting											
Pumping Dis	scontinu	ed												
Explain														
If flowing give ra	ate													
Flowing						(GPM)								
Draw down														
Time (min)	Static Level	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)	35.1	38.5	42.2	43.5	44.7	45	49	52.4	55.7	58.1	59.9	64.2	65.9	67.8
Recovery														
Time (mir	1)	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Lev (ft)	el	69.8	68.9	66.8	65.4	63.8	57.7	53.9	51.1	48.4	45.7	43.7	42.2	40.9
After test of well	بر امل ماری		-											

After test of well yield, water was

✓ Clear and sand free Other (specify)

Pump intake set at Pumping rate			Duration of pumping	9	Final wate	er level end of pumping	Disinfected? *
145 (ft)	4	(GPM)	1 hrs + 3	0 min	72.3	(ft)	✔ Yes 🗌 No
Recommended pun	np depth	Recom	mended pump rate	Well produc	tion		
132	(ft)	4	(GPM)	3	(0	GPM)	
13. Map of Well L							

Map 1. Please Click the map	area below to import an image file to use as the map.	Make map area bigger
(Alto Hay	Hection Contraction	
	Community	
	E	
Hulp.		B Mastwood Rd Mastwood Rd
	AND REAL	
See States	Google Imagery 62024 Arbox, First Base Solutions, Mazar Technologies, Map data 62024 Cunsta	Terms Pring: Sind Product Feedback 20 m

14. Information									
Well owner's information package delivered ✓ Yes □ No				Date Package Delivered (yyyy/mm/d 2023/10/03			Date Work Completed (yyyy/mm/dd) * 2024/07/31		
Comments K-packer and leader pipe above screen, tail pipe below screen Salt was encountered at 159ft in the rock. We filled the hole in, back to 148ft. Then set screen with a drop pipe from there on back. Salt appears to be gone.									
15. Well Contractor and Well Technician Information									
Business Name of Well Contractor * Herb Lang Well Drilling Ltd.						Well Contractor's License Number * 7560			
Business Address									
Unit Number	Street NumberStreet Name *4852Highway 7								
City/Town/Village * Omemee					Province ON			Postal Code * K0L 2W0	
Business Telephone Number Business Email Address 705-799-7088 hlwelldrilling@gmail.com									
Last Name of Well Technician * Guthrie				First Name of Well Technician * Ken			Well Technician's License Number * 4198		
16. Declaration *									
✓ I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate.									
Last Name Guthrie			First Name Ken			Email Address hlwelldrilling@gmail.com			

17. Ministry Use Only

Audit Number 2AOU S3DP

Appendix E

2024 Pumping Test Hydrographs Wells A395881, A395882 and A395883

